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1. Analysis of Variance

Traditionally, analysis of variance referred to regression analysis 
with categorical variables.  

Today, it is reasonable to consider analysis of variance as a special case 
of linear regression.  In Stata the xi: prefix may be used with the regress
command.

In the middle of this century, great ingenuity was expended to devise 
specially balanced experimental designs that could be solved with an 
electric calculator.

For example one-way analysis of variance involves comparing a 
continuous response variable in a number of groups defined by a 
single categorical variable.
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A critical assumption of these analyses is that the error terms for 
each observation are independent and have the same normal 
distribution.  This assumption is often reasonable as long as we only 
have one response observation per patient.

In contrast, we often have multiple observations per patient.  In this 
case some of the parameters measure attributes of the individual 
patients in the study.  Such attributes are called random effects.  A 
model that has  both random and fixed effects is called a mixed 
effects model or a repeated measures model.

These analyses assume that all parameters are attributes of the 
underlying population, and that we have obtained a representative 
sample of this population.  These parameters measure attributes that 
are called fixed-effects.

where

1,2,…k are unknown parameters, and 

ij are mutually independent, normally 
distributed error terms with mean 0 and 
standard deviation . 

2.  One-Way Analysis of Variance

Let ni be the number of subjects in the ith group

be the total number of study subjects

yij be a continuous response variable on the jth

patient from the ith group.

in n 

E |ij iy i    Under this model, the expected value of yij is

We assume for i = 1,2,…k;  j = 1,2,…,ni that 

yij = i + ij {9.1}
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Models like {9.1} are called fixed-effects models because the 
parameters  1,2,…k are fixed constants that are attributes of the 
underlying population. 

The response yij differs from i only because of the error term ij.  Let

b1,b2,…bk be the least squares estimates of                                         
1,2,…k, respectively,
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be the mean squared error (MSE) 
estimate of  2 {9.2}

1
/

in

i ij i
j

y y n


  be the sample mean for the ith group,

We estimate  by s, which is called the root MSE.  It can be shown that 

and                   .  A 95% confidence interval for i is 

given by {9.3}

 , ,i i i ib y E b   2 2E s    

 ,0.025 /i n k iy t s n

We can calculate a statistic that has a F distribution with k-1 and 
n-k degrees of freedom when this null hypothesis is true.

We wish to test the null hypothesis that the expected response is the same 
in all groups.  That is, we wish to test whether

{9.5}1 2 ... k    

Note that model {9.1} assumes that the standard deviation of ij is the 
same for all groups.  If it appears that there is appreciable variation in 
this standard deviation among groups then the 95% confidence interval 
for i should be estimated by

{9.4} 1,0.025ii n i iy t s n

where si is the sample standard deviation of yij within the ith group.

We reject the null hypothesis in favor of a multi-sided alternative 
hypothesis when the F statistic is sufficiently large. 
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The P value associated with this test is the probability that this statistic 
exceeds the observed value when this null hypothesis is true. 

When there are just two groups, the F statistic will have 1 and n – 2 
degrees of freedom.  In this case, the one-way analysis of variance is 
equivalent to an independent t test. 

The square root of this F statistic equals the absolute value of the t
statistic with n – 2 degrees of freedom. 

A test due to Levene (1960) can be performed to test the assumption 
that the standard deviation of  ij is constant within each group.  If 
this test is significant, or if there is considerable variation in the 
values of si, then you should use equation {9.4} rather than equation 
{9.3} to calculate confidence intervals for the group means.  

 ,0.025i n k iy t s n {9.3}

 1,0.025ii n i iy t s n {9.4}

If the standard deviations within the k groups appears similar we can 
increase the power of the test that              by using the formula

{9.6}

i j  
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3.  Multiple Comparisons

If, the analysis of variance F statistic is significant and the number 
of groups is not too large, we can make pair-wise comparisons of the 
different groups.

This test is more powerful then the independent t test but is less 
robust.

i j  Under the null hypothesis that              equation {9.6} will have a t
distribution with n-k degrees of freedom.

where s is the root MSE estimate of  obtained from the analysis of 
variance.
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Alternately, a confidence interval based on the independent t test 
may be used if it appears unreasonable to assume a uniform 
standard deviation in all groups

{9.8}2,0.025
1 1

i ji j n n p
i j

y y t s
n n 

 
   

 

If the F test is not significant you should not report pair-wise 
significant differences unless they remain significant after a 
Bonferroni multiple comparisons adjustment (multiplying the P 
value by the number of pair wise tests.  

A 95% confidence interval for the difference in population means 
between groups i and j is

,0.025
1 1

i j n k
i j

y y t s
n n

 
   

 
{9.7}

If the number of groups is large and there is no natural ordering of the 
groups then a multiple comparisons adjustment may be advisable even if 
the F test is significant.

4. Fisher’s Protected Least Significant Difference
(LSD) Approach to Multiple Comparisons

The idea of only analyzing subgroup effects (e.g. differences in group 
means) when the main effects (e.g. F test) are significant is known as 
known as Fisher’s Protected Least Significant Difference
(LSD) Approach to Multiple Comparisons.

The F statistic tests the hypothesis that all of the group response 
means are simultaneously equal.

If we can reject this hypothesis it follows that some of the means must 
be different.

Fisher argued that in this situation you should be able to investigate 
which ones are different without having to pay a multiple comparisons 
penalty.

This approach is not guaranteed to preserve the experiment-wide Type 
I error probability, but makes sense in well structured experiments 
where the number of groups being examined is not too large.
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5.     Reformulating Analysis of Variance as a Linear               
Regression Model

A one-way analysis of variance is, in fact, a special case of the multiple 
regression model.  Let 

denote the response from the hth study subject,                 
h = 1,2,…n, and let

hy

1 :  if the  patient is in the  group

0 :  otherwise                                          

th th

hi
h i

x


 


Then model (9.1) can be rewritten

{9.9}

where h are mutually independent, normally distributed error terms 
with mean 0 and standard deviation .  Note that model {9.9} is a 
special case of model (3.1).  Thus, this analysis of variance is also a 
regression analysis in which all of the covariates are zero-one 
indicator variables.  

2 2 3 3 ...h h h k hk hy x x x         

 i 1y 1iy yThe least squares estimates of      and      are      and             , 
respectively.  

Also, 

 2 3

  if the  patient is from group 1
E | , , ,

 if the  patient is from group 1

th

h h h hk th
i

h
y x x x

h i

  
   

Thus,  is the expected response of patients in the first group and i is 
the expected difference in the response of patients in the ith and first 
groups.

We can use any multiple linear regression program to 
perform a one-way analysis of variance, although most 
software packages have a separate procedure for this task.
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6.     Non-parametric Methods

a)     Kruskal-Wallis Test

The Kruskal-Wallis test is the non-parametric analog of the one-
way analysis of variance (Kruskal and Wallis 1952).

Model {9.1} assumes that the     terms are normally distributed and 
have the same standard deviation.  If either of these assumptions is 
badly violated then the Kruskal-Wallis test should be used.

ij

The null hypothesis of this test is that the distributions of the 
response variables are the same in each group.  

ijy

Suppose that patients are divided into k groups as in model {9.1} 

and that      is a continuous response variable on the jth patient 

from the ith group.

We rank the values of yij from lowest to highest and let Ri be the sum 
of the ranks for the patients from the ith group.

Let 

ni be the number of subjects in the ith group,  

be the total number of study subjects.in n 

When there are ties a slightly more complicated formula is used (see 
Steel and Torrie 1980).
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If all of the values of yij are distinct (no ties) then the Kruskal-Wallis 
test statistic is

{9.10}
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Under the null hypothesis, H will have a chi-squared distribution with  
k – 1 degrees of freedom as long as the number of patients in each group 
is reasonably large.

The non-parametric analog of the independent t-test is the Wilcoxon-
Mann-Whitney rank-sum test.  This rank-sum test and the Kruskal-
Wallis test are equivalent when there are only two groups of patients. 

Note that the value of H will be the same for any two data sets in 
which the data values have the same ranks.  Increasing the largest 
observation or decreasing the smallest observation will have no effect 
on H.  Hence, extreme outliers will not unduly affect this test.

7.     Example:  A Polymorphism in the Estrogen Receptor Gene

The human estrogen receptor gene contains a two-allele restriction
fragment length polymorphism that can be detected by Southern blots of
DNA digested with the PuvII restriction endonuclease. Bands at 1.6 kb
and/or 0.7 kb identify the genotype for these alleles.

Parl et al. (1989) studied the relationship between this genotype and
age of diagnosis among 59 breast cancer patients.
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Number of Patients 14 29 16 59

Age at breast cancer diagnosis

Mean 64.643 64.379 50.375 60.644

Standard Deviation 11.18 13.26 10.64 13.49

95% Confidence Interval

Equation {9.3}
Pooled SD estimate

(58.1 –
71.1)

(59.9 –
68.9)

(44.3 –
56.5)

Genotype*

Total

1.6/1.6 1.6/0.7 0.7/0.7

Equation {9.4}
Separate SD estimates

(58.2 –
71.1)

(59.3 –
69.4)

(44.7 –
56.0)

(57.1 –
64.2)

Table 9.1

To test the null hypothesis that the age at diagnosis does not vary with
genotype, we perform a one-way analysis of variance on the ages of
patients in these three groups using model {9.1}.

The P value form the F statistic equals 0.001.

The estimates of these parameters are the average ages given in
the preceding table.

1 2,  3In this analysis, n = 59, k = 3 and and represent the expected
age of breast cancer diagnosis among patients with the 1.6/1.6, 1.6/0.7,
and 0.7/0.7 genotypes, respectively.
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1.6/0.7 vs. 1.6/1.6 -0.264
(-8.17 to 

7.65)
0.95 0.96

0.7/0. 7 vs. 1.6/1.6 -14.268
(-23.2 to

-5.37)
0.002 0.003

Comparison
Difference in 
Mean Age of 

Diagnosis

95%               
Confidence 

Interval

P Value

Eq. 
{0.7}*

Rank-
sum**

0.7/0. 7 vs. 1.6/0.7 -14.004
(-21.6 to

-6.43)
< 0.0005 0.002

*  Equation 7 uses the pooled estimate of s

** Wilcoxon-Mann-Whitney rank-sum test

Table 9.2

Age at Breast Cancer Diagnosis
35 40 45 50 55 60 65 75 8570 80

0.7/0.7

1.6/0.7

1.6/1.6
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8.     One-Way Analyses of Variance using Stata

The following Stata log file and comments illustrate how to perform
the one-way analysis of variance discussed in the preceding section.

* 10.8.ERpolymorphism.log
. *
. *  Do a one-way analysis of variance to determine whether age
. *  at breast cancer diagnosis varies with estrogen receptor (ER)
. *  genotype using the data of Parl et al. (1989).
. *
. use C:\WDDtext\10.8.ERpolymorphism.dta {1}
. * Statistics > Summaries, tables, ... > Summary ... > Confidence intervals
. ci age {2}

Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval]
-------------+-----------------------------------------------------------

age |      59     60.64407    1.756804        57.12744    64.16069

{1} This data set contains the age of diagnosis and estrogen 
receptor genotype of the 59 breast cancer patients studied by 
Parl et al. (1989).  The genotypes 1.6/1.6, 1.6/0.7 and 0.7/0.7 are 
coded 1, 2 and 3 in the variable genotype, respectively.

{2} This ci command calculates the mean age of diagnosis (age) 
together with the associated 95% confidence interval.  This 
confidence interval is calculated using equation {9.4}.  The 
estimated standard error of the mean and the number of 
patients with non-missing ages is also given. 
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. * Statistics > Summaries, tables, ... > Summary ... > Confidence intervals

. by genotype: ci age {3}

_______________________________________________________________________________
-> genotype = 1.6/1.6

Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval]
-------------+----------------------------------------------------------------

age |      14     64.64286    2.988269         58.1871    71.09862
________________________________________________________________________________
-> genotype = 1.6/0.7

Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval]
-------------+----------------------------------------------------------------

age |      29     64.37931    2.462234        59.33565    69.42297
__________________________________________________________________________________
-> genotype = 0.7/0.7

Variable |     Obs         Mean    Std. Err.       [95% Conf. Interval]
-------------+---------------------------------------------------------------

age |      16       50.375    2.659691          44.706      56.044

{3} The command prefix by genotype: specifies that means and 95% 
confidence intervals are to be calculated for each of the three 
genotypes. 
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. *

. *  The following graph type is not available in Stata version 8.0

. *

. graph7 age, by(genotype) box oneway {4}

{4} The graph7 command implements Stata Version 7 commands using 
version 7 syntax.  The following graph is one that is not available in 
Version 8.  The box and oneway options of this graph command 
create a graph that is similar to the Figure.  See also Sections 10.7 
and 10.8 of text for a prettier way of drawing this graph.

Age at Breast Cancer Diagnosis
35 40 45 50 55 60 65 75 8570 80

0.7/0.7

1.6/0.7

1.6/1.6
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{5} This oneway command performs a one-way analysis of variance
of age with respect to the three distinct values of genotype.  

{6} The F statistic from this analysis equals 7.86.  If the mean age of 
diagnosis in the target population is the same for all three 
genotypes, this statistic will have an F distribution with k – 1 =   3 
– 1= 2 and  n – k = 56 degrees of freedom.  The probability that 
this statistic exceeds 7.86 is 0.001.

{7} The MSE estimate of  is  = 147.246. 

{8} Bartlett’s test for equal variances (i.e. equal standard 
deviations) gives a P value of 0.58. 

. * Statistics > Linear models and related > ANOVA/MANOVA > One-way ANOVA

. oneway age genotype {5}

Analysis of Variance
Source              SS         df      MS            F     Prob > F

------------------------------------------------------------------------
Between groups      2315.73355      2   1157.86678      7.86     0.0010 {6}
Within groups      8245.79187     56   147.246283 {7}
------------------------------------------------------------------------

Total           10561.5254     58   182.095266

Bartlett's test for equal variances:  chi2(2) =   1.0798  Prob>chi2 = 0.583 {8}
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. *

. *  Test whether the standard deviations of age are equal in

. *  patients with different genotypes.

. *

. * Statistics > Summaries, ... > Classical ... > Robust equal variance test

. robvar age, by(genotype)

|     Summary of Age at Diagnosis
Genotype |        Mean   Std. Dev.       Freq.

------------+------------------------------------
1.6/1.6 |   64.642857   11.181077          14
1.6/0.7 |    64.37931   13.259535          29
0.7/0.7 |      50.375   10.638766          16

------------+------------------------------------
Total |   60.644068   13.494268          59

W0  =  0.83032671   df(2, 56)     Pr > F = 0.44120161

W50 =  0.60460508   df(2, 56)     Pr > F = 0.54981692

W10 =  0.79381598   df(2, 56)     Pr > F = 0.45713722

This robvar command performs a  test of the equality of variance among 
groups defined by genotype using methods of Levene (1960) and Brown and 
Forsythe (1974).  These tests are less sensitive to departures from normality 
than Bartlett’s test.  There is no evidence of heterogeneity of variance for age 
in these three groups.
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. oneway age genotype

Analysis of Variance
Source              SS         df      MS            F     Prob > F

------------------------------------------------------------------------
Between groups      2315.73355      2   1157.86678      7.86     0.0010
Within groups       8245.79187     56   147.246283
------------------------------------------------------------------------

Total           10561.5254     58   182.095266

. *

. *  Repeat analysis using linear regression

. *

. *  Statistics > Linear models and related > Linear regression

. regress age i.genotype {9}

Source |       SS       df       MS              Number of obs =      59
-------------+------------------------------ F(  2,    56) =    7.86

Model |  2315.73355     2  1157.86678           Prob > F      =  0.0010
Residual |  8245.79187    56  147.246283           R-squared     =  0.2193

-------------+------------------------------ Adj R-squared =  0.1914
Total |  10561.5254    58  182.095266           Root MSE      =  12.135

------------------------------------------------------------------------------
age |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
genotype    |

2  |  -.2635468   3.949057    -0.07   0.947    -8.174458    7.647365 {10}
3  |  -14.26786   4.440775    -3.21   0.002     -23.1638   -5.371915

|
_cons |   64.64286   3.243084    19.93   0.000     58.14618    71.13953 {11}

------------------------------------------------------------------------------

{10} The estimates of      and      in this example are            
= 64.379 – 64.643 = – 0.264 and             = 50.375 – 64.643 =         
– 14.268, respectively.  They are highlighted in the column 
labeled Coef. The 95% confidence intervals for      and     are 
calculated using equation {9.7}.  The t statistics for testing the 
null hypotheses that      = 0 and      = 0 are – 0.07 and – 3.21, 
respectively.  They are calculated using equation {9.6}.  The 
highlighted values in this output are also given in Table 9.2.

2

2

3

3

3

2

2 1y y

3 1y y

{11} The estimate of     is      = 64.643.  The 95% confidence interval 
for     is calculated using equation {9.3}.  These statistics are also 
given in Table 10.1.




1y

{9} This regress command preforms exactly the same one-way 
analysis of variance as the oneway command given above.  Note 
that the F statistic, the P value for this statistic and the MSE 
estimate of  are identical to that given by the oneway command.  
The syntax of the xi: prefix is explained in Section 5.10.  The 
model used by this command is equation {9.9} with k = 3.
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. lincom _cons + _Igenotype_2 {12}

( 1)  _Igenotype_2 + _cons = 0.0

----------------------------------------------------------------------------
age |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-----------+----------------------------------------------------------------
(1) |   64.37931   2.253322    28.57   0.000     59.86536    68.89326 {13}

----------------------------------------------------------------------------

. lincom _cons + _Igenotype_3

( 1)  _Igenotype_3 + _cons = 0.0

----------------------------------------------------------------------------
age |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-----------+----------------------------------------------------------------
(1) |     50.375   3.033627    16.61   0.000     44.29791    56.45209

----------------------------------------------------------------------------

{12} This lincom command estimates            by            =      .  A 95 % 
confidence interval for this estimate is also given.  Note that           
equals the population mean age of diagnosis among women with 
the 1.6/0.7 genotype.  Output from this and the next lincom
command are also given in Table 9.1.

2  2
ˆ̂   2y

2 

{13} This confidence interval is calculated using equation {9.3}. 
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. lincom 3.genotype - 2.genotype {14}

( 1) - 2.genotype + 3.genotype = 0.0

------------------------------------------------------------------------------
age |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

-------------+----------------------------------------------------------------
(1) |  -14.00431   3.778935    -3.71   0.000    -21.57443   -6.434194     

------------------------------------------------------------------------------
. *
. *  Perform a Kruskal-Wallis analysis of variance
. *
. * Statistics > Nonparametric... > Tests of hypotheses > Kruskal-Wallis...
. kwallis age, by(genotype) {15}

Test: Equality of populations (Kruskal-Wallis test)

+---------------------------+
| genotype | Obs | Rank Sum |
|----------+-----+----------|
|  1.6/1.6 |  14 |   494.00 |
|  1.6/0.7 |  29 |   999.50 |
|  0.7/0.7 |  16 |   276.50 |
+---------------------------+

chi-squared =    12.060 with 2 d.f.
probability =     0.0024

chi-squared with ties =    12.073 with 2 d.f.
probability =     0.0024

{15} This kwallis command performs a Kruskal-Wallis test of age
by genotype. The test statistic, adjusted for ties, equals 12.073.  
The associated P value equal 0.0024. 

{14} This command estimates               by                =              = 50.375 
– 64.379 = – 14.004.  The null hypothesis that              is the 
same as the hypothesis that the mean age of diagnosis in 
groups 2 and 3 are equal.  The confidence interval for              
is calculated using equation {9.7}.  The highlighted values are 
also given in Table 9.2. 

3 2   3 2
ˆ ˆ   3 2y y

3 2  

3 2  
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. * Statistics > Nonparametric... > Tests... > Wilcoxon rank-sum test

. ranksum age if genotype !=3, by(genotype) {16}

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype |      obs    rank sum    expected
-------------+---------------------------------

1.6/1.6 |       14         310         308
1.6/0.7 |       29         636         638

-------------+---------------------------------
combined |       43         946         946

unadjusted variance     1488.67
adjustment for ties       -2.70

----------

adjusted variance       1485.97

Ho: age(genotype==1.6/1.6) = age(genotype==1.6/0.7)
z =   0.052

Prob > |z| =   0.9586

{16} This command performs a Wilcoxon-Mann-Whitney rank-sum
test on the age of diagnosis of women with the 1.6/1.6 genotype 
versus the 1.6/0.7 genotype.  The P value for this test is 0.96.  
The next two commands perform the other two pair-wise 
comparisons of age by genotype using this rank-sum test.  The 
highlighted P values are included in Table 10.2. 
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. * Statistics > Nonparametric... > Tests... > Wilcoxon rank-sum test

. ranksum age if genotype ~=2, by(genotype)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype |      obs    rank sum    expected
-------------+---------------------------------

1.6/1.6 |       14         289         217
0.7/0.7 |       16         176         248

-------------+---------------------------------
combined |       30         465         465

unadjusted variance      578.67
adjustment for ties       -1.67

----------
adjusted variance        576.99

Ho: age(genotype==1.6/1.6) = age(genotype==0.7/0.7)
z =   2.997

Prob > |z| =   0.0027
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. * Statistics > Nonparametric... > Tests... > Wilcoxon rank-sum test

. ranksum age if genotype ~=1, by(genotype)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

genotype |      obs    rank sum    expected
-------------+---------------------------------

1.6/0.7 |       29       798.5         667
0.7/0.7 |       16       236.5         368

-------------+---------------------------------
combined |       45        1035        1035

unadjusted variance     1778.67
adjustment for ties       -2.23

----------
adjusted variance       1776.44

Ho: age(genotype==1.6/0.7) = age(genotype==0.7/0.7)
z =   3.120

Prob > |z| =   0.0018

. * Statistics > Nonparametric... > Tests of hypotheses > Kruskal-Wallis...

. kwallis age if genotype ~=1, by(genotype) {17}

Test: Equality of populations (Kruskal-Wallis test)

+---------------------------+
| genotype | Obs | Rank Sum |
|----------+-----+----------|
|  1.6/0.7 |  29 |   798.50 |
|  0.7/0.7 |  16 |   236.50 |
+---------------------------+

chi-squared =     9.722 with 1 d.f.
probability =     0.0018

chi-squared with ties =     9.734 with 1 d.f.
probability =     0.0018

{17} This command repeats the preceding command using the 
Kruskal-Wallis test.  This test is equivalent to the rank-sum 
test when only two groups are being compared.  Note that the P
values from these tests both equal 0.0018.
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9.     Two-Way Analysis of Variance, Analysis of Covariance, 
and Other Models

Fixed-effects analyses of variance generalize to a wide variety of 
complex models.  For example, suppose that hypertensive patients 
were treated with either a placebo, a diuretic alone, a beta-blocker 
alone, or with both a diuretic and a beta-blocker.  Then a model of 
the effect of treatment on diastolic blood pressure (DBP) might be

{9.11}1 1 2 2i i i iy x x       

1ix 1:   patient is on a diuretic
0:  otherwise                           

thi



=

2ix 1:   patient is on a beta-blocker
0:  otherwise                                  

thi



=

 1 2

where

,     and       are unknown parameters,

is the DBP of the ith patient after some standard interval 
therapy , and

iy

are error terms that are independently and normally 
distributed with mean zero and standard deviation

i


Model {9.11} is an example of a fixed-effects, two-way analysis of 
variance.

A critical feature of this model is that each patient’s blood pressure is 
only observed once.

It is called two-way because each patient is simultaneously influenced 
by two covariates — in this case whether she did, or did not, receive a 
diuretic or a beta-blocker.

The model is additive since it assumes that the mean DBP of patients 
on both drugs is  + 1 +2.

If this assumption is unreasonable, we can add an interaction term 
as in Section 3.12.

It is this feature that makes the independence assumption for the error term 
reasonable and makes this a fixed-effects model.  In this model,

 is the mean DBP of patients on placebo,

 + 1 is the mean DBP of patients on the diuretic alone, 

 + 2 is the mean DBP of patients on the beta-blocker alone, and

 + 1 + 2 is the mean DBP of patients on both treatments.
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10.     Fixed Effects Analysis of Covariance

This refers to linear regression models with both categorical and continuous 
covariates.  Inference from these models is called analysis of covariance.

These models no longer need the special consideration that they received 
in years passed and can be easily handled by the regress command.

where agei  is the ith patient’s age, 3 is the parameter associated with 
age, and the other terms are as defined in model {9.11}.  The analysis of 
model {9.12} would be an example of analysis of covariance.

1 1 2 2 3i i i i iy x x age          

For example, we could add the patient’s age to model (9.11).  This gives

{9.12}

 Regression analysis with categorical variables and one response measure 
per subject

 One-way analysis of variance:  The oneway command

 Multiple comparisons issues

 Reformulating analysis of variance as a linear regression model
 Non-parametric one-way analysis of variance

 Two-Way Analysis of Variance

 Analysis of Covariance

 95% confidence intervals for group means
 95% confidence intervals for the difference between group means
 Testing for homogeneity of standard deviations across groups

The robvar command

 Fisher’s protected least significant difference approach
 Bonferroni’s multiple comparison adjustment

 Kruskal-Wallis test:  The kwallis command
 Wilcoxon rank-sum test:  The ranksum command

 Simultaneously evaluating two categorical risk factors

 Analyzing models with both categorical and continuous covariates

11.   What we have covered
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