What do you believe about θ ? $P(0.49 < \theta < 0.51) = ?$

The Beta distribution:

$$Prior(\theta) = p(\theta) = p(\theta \mid \alpha, \beta) = \theta \wedge (\alpha-1) * (1-\theta) \wedge (\beta-1) / B(\alpha, \beta)$$

Explore it in R using rbeta (10^6 , α , β). hist(rbeta(10^6 , 1, 1), xlim=c(0,1))

Let X = the number of heads and X ~ Binomial(n, θ). Thus, $f(x \mid \theta) = choose(n, x) * \theta^x * (1-\theta)^(n-x)$

Now that you've collected some data, i.e. you have an x value, how does your belief about θ change?

Apply Bayes Theorem to solve for $f(\theta \mid x)$.

$$f(\theta \mid x) = f(x \mid \theta) * p(\theta) / k_1$$
 -- by Bayes theorem where $k_1 = f(x) = \int_0^1 f(x \mid \theta) p(\theta) d\theta$
Note for a given value of x, k_1 is just a constant.

$$f(\theta \mid x) = \theta^x * (1-\theta)^(n-x) * \theta^(\alpha-1) * (1-\theta)^(\beta-1) / k_2$$

where $k_2 = k_1/\text{choose}(n, x)$. k_2 is still a constant for a given x .

$$f(\theta \mid x) = \theta (\alpha-1 + x) (1-\theta)(\beta-1 + n-x) / k_2$$

We know the integral of $f(\theta \mid x)$ for θ from 0 to 1 must equal 1, so we can rewrite the constant as ... aha! $f(\theta \mid x) = \theta \wedge (\alpha + x - 1) * (1 - \theta) \wedge (\beta + n - x - 1) / B(\alpha + x, \beta + n - x)$

```
Try it:
```

```
Prior(\theta) = p(\theta) = p(\theta | \alpha, \beta) = Beta(\alpha, \beta)
```

```
Let \alpha=15 and \beta=15 hist( rbeta(10^6, 15, 15), xlim=c(0,1) )
```

Now observe some data. What does your belief look like now? $f(\theta \mid x) = \theta \wedge (\alpha + x - 1) * (1 - \theta) \wedge (\beta + n - x - 1) / B(\alpha + x, \beta + n - x)$ = Beta(\alpha + x, \beta + n - x)

```
f = rbeta(10^6, 15+?, 15+?)
hist(f, xlim=c(0,1))
```

The distribution graphically shows your full belief distribution. How could you summarize your updated belief about θ with a point estimate and an interval?

Can you answer the question $P(0.49 < \theta < 0.51) = ?$ mean(0.49 < f & f < 0.51)

Observe some more data. Now what do you believe?

What would it take to dramatically change your belief about θ ?