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Likelihood Ratios 
 
A likelihood ratio is a ratio of two probabilities. These 
two probabilities have a particular form and we will 
soon see what that general form is.  
 
 
Likelihood ratios are a very important in statistics 
and play a large role in many different theoretical 
arenas. In general we derive likelihood ratios from 
likelihood functions, but simple examples of 
likelihood ratios are fairly common. 
 
 
Likelihood ratios are important because they provide 
a means of measuring the evidence in the data for 
one hypothesis over another. 
 
 
To illustrate consider the following example: 
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This 2x2 table gives the properties of a diagnostic 
test for the presence of some disease. 
 

 
 

  Test Result 
 positive negative 

Disease yes 0.94 0.06 
Status no 0.02 0.98 

 
 
The sensitivity of the test is P(T+|D+)=0.94 and 
The specificity is P(T-|D-)=0.98. 
 
 
Now suppose this test is preformed on a person and 
the test result is positive. A physician might then 
ask: 
 
1) Should this observation lead me to believe that 

this person has the disease? 
 
2) Does this observation justify my acting as if he 

has the disease? 
 
3) Is this test result evidence that he has the 

disease? 
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These generic questions define three distinct 
problem-areas of statistics: 

 
1. What should I believe?     (Bayesian Inference) 
 
 

2. What should I do?        (Decision Theory) 
 
 

3. What do these data say?   (Evidential Analysis) 
 
 
Answering question #1 requires applying Bayes 
theorem, which we’ll learn in the next lecture. 
Question #2 is answered with the Frequentist 
hypothesis testing.  Likelihood ratios provide the 
mechanism for answering question #3. 
 
 
For now, it is enough to understand that likelihood 
ratios tell us what the data say about one hypothesis 
versus another. That is, they provide the answer for 
question #3 (and hence not any other question). 
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Returning to our example… 
 

  Test Result 
 positive negative 

Disease yes 0.94 0.06 
Status no 0.02 0.98 

 
 
After observing a positive test result, the physician’s 
answers to the three questions must be: 
 

1. Maybe 
2. Maybe 
3. Yes 

 
Why? 
 
The answers to questions #1 and #2 depend on 
more than just the test outcome itself. Hence the 
answer of ‘maybe’. 
 
Specifically, the answer to question #1 depends on 
what the physician believes prior to conducting the 
test (is the disease rare?) and the answer to 
question #2 depends on the risk-benefit tradeoff 
associated with the treatment (What are the side 
effects of treatment?  What’s the consequence of a 
type I error?  … a type II error?). 
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Regardless of these extraneous considerations (risks, 
benefits, prior beliefs etc.), we are always correct 
when we interpret a positive result from this test as 
evidence that the disease is present.  
 
 
Why? Our reasoning here is intuitive because of the 
context (for example no one would argue that a 
positive test is evidence that the disease is absent.) 
 
But it is also intuitive in a statistical sense: if the 
disease was really present, the probability of 
observing a positive result is 0.94  
( P(T+|D+)=0.94 ) 
 
and if the disease was really absent, the probability 
of observing a positive result is 0.02  
( P(T+|D-)=1-P(T-|D-)=1-0.98=0.02 ) 
 
and, finally, 0.94 is greater than 0.02. 
 
 
  Thus we are more likely to observed a positive 

test result when the disease is present, and 
hence a positive result is evidence for the 
hypothesis that disease is present versus that 
the disease is absent. 

 
This reasoning leads to a general principle: 
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The Law of Likelihood 
 

If hypothesis A implies that the probability of 
observing some data X is P(X|A)=PA(X), while 
hypothesis B implies that the probability is 
P(X|B)=PB(X), then the observation X=k is evidence 
supporting A over B if PA(k) > PB(k), and the 
likelihood ratio, PA(k)/PB(k), measures the strength 
of that evidence.  
 
 
 
 Likelihood ratios, LR = PA(k)/PB(k), measure the 

strength of the evidence  
 
 
 “HA is supported over HB by a factor of LR.” 
 

a. If LR=1, the evidence for HA vis-à-vis HB is 
neutral 

 
b. If LR>1, the evidence supports HA over HB 

 
c. If LR<1, the evidence supports HB over HA 
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Now we see that a likelihood ratio is a ratio of two 
probabilities, where each probability gives the 
probability of the (observed) data under different 
hypotheses. 
 
The degree to which the evidence (or data) supports 
one hypothesis over another is also important.  
 
For interpreting and communicating the strength of 
evidence it is useful to divide the LR scale into 
descriptive categories (although we won’t talk about 
how these benchmarks were derived). 
 
The benchmarks are LRs of 8 and 32 .  
 
 Weak evidence  

for HA over HB:  1<LR<8 
for HB over HA:   1/8<LR<1 

 
 Moderate evidence  

for HA over HB:  8<LR<32 
for HB over HA:   1/32<LR<1/8 

 
 Strong evidence   

for HA over HB:  32<LR 
for HB over HA:   LR<1/32 
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In our diagnostic example the likelihood ratio of 
interest is 47, indicating strong evidence. 
 
 

  Test Result 
 positive negative 

Disease yes 0.94 0.06 
Status no 0.02 0.98 

 
 
A positive test result is statistical evidence 
supporting HD+ over HD- because 
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Hence the answer to question #3, “Is this test result 
evidence that he has the disease?”, is correctly 
answered in the affirmative (and we now know 
why!). 
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Unfortunately, statistical evidence can be misleading.  
 
For example, it is possible to observe a positive test 
when the disease is in fact absent.  
 
In such a situation, we would still interpret the 
positive test as evidence that the disease is present 
(because we don’t know the true disease status).  
 
This is ok, and it is important to understand that our 
interpretation of the evidence is correct regardless of 
the true disease status. It is the evidence itself that 
is misleading. We have not made an ‘error’ in how 
we interpreted the evidence. 
 
How likely a likelihood ratio is to be misleading 
depends on how strong the evidence is.  It is much 
less likely that strong evidence is misleading than 
weak evidence is.  
 
 
Here, this diagnostic test is a good one in the sense 
that misleading evidence is seldom observed 
because P(T+|D-)=0.02. 
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Just for fun, consider a different diagnostic test for 
the same disease (call it test #2). Its properties are 
listed in the table below. 
 
 

Test #2  Test Result 
 positive negative 

Disease yes 0.47 0.53 
Status no 0.01 0.99 

 
 
A positive result on the second test is again 
statistical evidence supporting HD+ over HD- by a 
factor of 47: 
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But the probability of observing misleading evidence 
under this second test is half of that of the first test 
because P(T+|D-)=0.01. 
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This leads to a natural and very important question: 
 
Is a positive result on the second test stronger 
evidence in favor of disease than a positive result on 
the first one? 
 
Or 
 
Is the positive result on the second test “less likely 
to be misleading”, “more reliable” in some sense, or 
does it warrant more “confidence”? 
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Answer:  
 
No!  A positive result on the second test is 
equivalent, as evidence about the presence or 
absence of disease, to a positive result on the first. 
 
 
(For those disbelievers we next prove it with a 
simple application of Bayes Theorem.) 
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Proof: 
 
A positive test result is misleading if and only if the 

subject does not have the disease.  The 
probability of that P(D-|T+).   
Claim: P(D-|T+) is the same for both tests! 

 
 
Applying Bayes Theorem: 
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where P(D+) is the prevalence of the disease. So we 
see that although P(D-|T+) depends on the 
prevalence, it is the same for both tests because the 
strength of evidence (i.e., likelihood ratio) is the 
same in both cases. 
 
 Thus, an observed positive result is no more 

likely to be misleading if it comes from one test 
than if it comes from the other. 
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This is, in fact, old news (although we tend to ignore 
it everyday when we interpret statistical results).  
R.A. Fisher, one of the founding fathers of modern 
statistics and ardent proponent of the p-value, 
wrote: 
 

 
“In fact, as a matter of principle, the infrequency 
with which, in particular circumstances, decisive 
evidence is obtained, should not be confused with 
the force, or cogency, of such evidence.” 
 

   -- R. A. Fisher, 1959, p.93 
 
 
 
Up to now, we have considered only the case when 
there were just two hypotheses of interest. 

 
 

What happens if we want to characterize the 
evidence about, say a probability, a rate or a mean?  
 
In this case there are an infinite number of likelihood 
ratios because the parameter of interest may take an 
infinite number of values.  
 
To deal with this situation we need an additional 
concept: the likelihood function. 
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Likelihood Functions 
 
A likelihood function is (essentially) a function that 
gives the probability of our data under a specified 
hypothesis.  
 
 
 
Example: Suppose that I was interested in 
measuring the evidence about the probability of 
cardiovascular death within one year of taking drug 
A.  
 
Suppose further that in a Cincinnati clinic I gave the 
drug to 22 people and 7 died within the following 
year. 
 
 
 
I am interested in learning about the probability of 
cardiovascular death within one year of taking drug 
A.  Let’s call that unknown probability .  I might 
want to know if that probability is 20% or 30%. 
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Now, if the probability of cardiovascular death on this 
drug is 20% ( = 0.2), the chance of observing 
exactly 7 CV deaths out of 22 people is given by our 
favorite binomial formula  
 
 

P(Y = 7| = 0.2) = 








  

  

7

22  (0.2)7(0.8)15 = 0.0768         

 
 
(This assumes, of course, that the binomial model’s 
assumptions are met. Quick quiz: the required 
constant probability of success and independent 
trials translates into what here?) 
 
 
And if the probability of cardiovascular death on this 
drug is 30% ( = 0.3), the chance of observing 
exactly 7 CV deaths out of 22 people is given by  
 
 

P(Y = 7| = 0.3) = 








  

  

7

22  (0.3)7(0.7)15 = 0.1771 

 
 
(Notice that I’ve used the conditional probability sign 
‘|’ to emphasize the fact that I am assuming I know 
 to be some particular value. That is, I’m 
conditioning on .)
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The Law of Likelihood says that we measure the 
evidence for the hypothesis that the probability of CV 
death is 30% versus 20% with the ratio 
0.1771/0.0768 = 2.31. 
 
 
Written differently, we have that observing 7 CV 
deaths out of 22 people is evidence supporting the 
hypothesis that  = 0.3 over the hypothesis that  = 
0.2 by a factor 2.31 (weak evidence). 
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The likelihood function is simply 
 

L(θ) = L(θ|Y=7) = P(Y = 7| θ ) = 








  

  

7

22 θ7(1-θ)15           

 
Notice the change in notation from ‘P’ to ‘L’ in an 
attempt to emphasize that (1) the data are now 
observed, (2) θ is now a variable and (3) the 
likelihood function is no longer a true probability 
function. 
 
Rather than listing all the likelihood ratios (which 
would be quite cumbersome) we simply plot the 
likelihood function, L(θ|Y=7), as a function of  θ.  
We’ll standardized the y-axis so the peak is at 1. 

 

 Likelihood function for binomial model 
7 CV deaths in 22 people
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If we are interested in learning about a rate (say 
after observing K events in a specified time period), 
then the Poisson distribution gives the appropriate 
likelihood function as 
 

L() = L(|Y=k) = P( Y = k |)  =  λke-λ /k! 
 
 
For example, suppose I purchase a bunch of lotto 
tickets each month and got one winner.  I am 
interested in the rate of winning lotto tickets for my 
buying habits. Then L(|Y=1) is plotted below. 
 
 

 
 
 

Likelihood function for Poisson Model
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And if we are interested in learning about the mean 
of a distribution (say after observing a score of 
k=180, with fixed 2=2), then the Normal 
distribution gives the appropriate likelihood function 
as 
 

L(|2) = L(|2,Y=k) = P( Y = k|,2)   

 
 
The likelihood function is then 
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When we talk about likelihood functions we usually 
refer to two quantities: (1) the value of the 
parameter that gives the maximum probability 
(called the Maximum Likelihood Estimator - MLE) and 
(2) the curvature or peakedness of the likelihood 
function (called the information). 
 
 
So far we have considered only very simple 
likelihood functions (based on only one observation). 
In the future we will encounter likelihood functions 
for groups of observations. 
 
 
 
Finally, note that all probability distribution functions 
are likelihood functions if you consider the data fixed 
and the parameters as variables.  
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The University Group Diabetes 
Program (1961-1975) 

 
 
 Multi-centered, randomized clinical trial, to 

evaluate the effect of Tolbutamide on 
vascular complications of adult-onset 
diabetes. 

 
 
 
 Probability of cardiovascular death? 
 

 
Center 

Tolbutamide Placebo 
Deaths Total Deaths Total 

Baltimore 1 22 0 24 
Cincinnati 7 22 2 23 
Cleveland 1 18 0 19 

Minneapolis 6 24 2 22 
New York 2 20 3 22 
Williamson 3 22 1 23 
Birmingham 2 11 0 12 

Boston 4 17 1 15 
Chicago 0 12 1 11 
St. Louis 0 11 0 10 
San Juan 0 12 0 12 
Seattle 0 11 0 11 

All Centers 26 204 10 205 
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Probability of Cardiovascular Death
 Placebo group

Probability
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(a) Binomial Model
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Relative Risk of Cardiovascular Death
 Tolbutamide versus Placebo

Relative Risk 
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