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Recall from the last lecture on nonparametric 
methods we used the example of reductions of 
forced vital capacity. 
 

 FVC Reduc (ml) 
Subj Placebo Drug 

1 224 213 
2 80 95 
3 75 33 
4 541 440 
5 74 -32 
6 85 -28 

 
At first blush, this looks like a two-sample problem.  
However, the FVC reductions under placebo and 
under drug are both observed for each subject.  We 
have 6 pairs of measurements.  Thus, by looking at 
the differences, placebo minus drug, we reduce it to 
a one-sample problem. 
 

 FVC Reduc (ml)  
Subj Placebo Drug Difference 

1 224 213 11 
2 80 95 -15 
3 75 33 42 
4 541 440 101 
5 74 -32 106 
6 85 -28 113 
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Assuming you had paired outcomes X and Y, like 
with the FVC reductions and that the means were 
roughly normally distributed, would it be wrong to 
use a two-sample t-test on the difference in means? 
 
 

Unequal variance t-test:  
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What will happen with the two-sample t-test when X 
and Y are not independent?  
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An Illustrative Example in R: 
 
set.seed(1117)    # set to any fixed random number for reproducible results 
options(scipen=20)   # prevents scientific notation 
 
c <- 0.75   # choose correlation 
vx = 4*c^2 / (1 - c^2)    # variance needed for desired correlation 
 
PosCorPvals2sample <- c() 
PosCorPvalsPaired <- c() 
NegCorPvals2sample <- c() 
NegCorPvalsPaired <- c() 
sims <- 10^4 
for(i in 1:sims){ 
  x <- rnorm(100, 0, sqrt(vx)) 
  y <- x + rnorm(100, 0, 2) 
  z <- -x + rnorm(100, 0, 2) 
  PosCorPvals2sample <- c(PosCorPvals2sample, t.test(x,y)$p.value) 
  PosCorPvalsPaired <- c(PosCorPvalsPaired, t.test(x-y)$p.value) 
  NegCorPvals2sample <- c(NegCorPvals2sample, t.test(x,z)$p.value) 
  NegCorPvalsPaired <- c(NegCorPvalsPaired, t.test(x-z)$p.value) 
} 
 
plot(x, y) 
sum( PosCorPvals2sample<0.05 )/sims 
sum( PosCorPvalsPaired<0.05 )/sims 
 
plot(x, z) 
sum( NegCorPvals2sample<0.05 )/sims 
sum( NegCorPvalsPaired<0.05 )/sims 

 
Type I Error Rates 

Correlation two-sample un-
equal variances 

paired one-
sample test 

-0.99 0.1685 0.0474 
-0.75 0.1362 0.0505 
-0.50 0.0973 0.0522 
-0.25 0.0628 0.0502 
0.00 0.0476 0.0476 
0.25 0.0359 0.0493 
0.50 0.0115 0.0493 
0.75 0.0003 0.0493 
0.99 0.0000 0.0493 
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McNemar’s test for Paired Dichotomous data 
 
McNemar’s test is analogous to the paired t-test, 
except that is applied to only dichotomous data. 
 
We learned that when we want to compare the 
means in two groups of paired observations, the 
standard t-tests are not valid. This was because the 
variance of the difference in means was derived 
under the assumptions that the two groups are 
independent and so it ignores the covariance-
correlation term (which can increase or decrease 
that term). So in this case, both the hypothesis tests 
and confidence intervals that are based on this 
assumption will not provide the ‘correct’ answer. 
 
 
Side note: By correct, I mean that test will reject 
more or less often that the specified type I error. In 
statistics, this is what we mean by correct: that the 
test has the properties we designed it to. 
 
 
To solve this problem we reduced the data from two 
dimensions down to one, by subtracting the 
observations within a pair and analyzing the 
differences with a one sample t-test and confidence 
interval on the differences. This approach avoids the 
correlation problem because the estimated variance 
on the differences accounts for the correlation. 
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With dichotomous data the problem is more 
complicated, but a similar approach exists. It is 
called ‘McNemar’s test for paired binomial data’.  
 
The basic idea is still to analyze the differences 
(because the difference in means, or in this case 
proportions, is still the average of the differences) 
and then use the variance of the differences instead 
of trying to estimate the correlation.  
 
But rather than do this directly on the differences, 
we arrange everything in a 2x2 table. The catch is 
that we use a different test-statistic for this table. 
 
Setup:  
N pairs of (zero or one) responses, (Xi, Yi), i=1,…,N  
Xi is a Bernoulli (θ1) random variable 
Yi is a Bernoulli (θ2) random variable 
 
Here θ1 is the probability of success on the first 
observation within the pair and the θ2 is the 
probability of success on the second observation 
within the pair.  
 
An important note is that the probability of success, 
θ, does not depend on i. And we want to test if  
H: θ1 = θ2, i.e. is the probability of success different 
on the first trial than on the second. 
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Example: A recent screening study of 49,528 women 
(the DMIST trial) compared two different imaging 
modalities (mammogram, digital mammogram) for 
detecting breast cancer. Both modalities were 
preformed on each woman. If both exams were 
negative the women were followed for one year to be 
sure cancer was not present and if either exam was 
positive a biopsy was preformed.  
 
(This was designed and analyzed at Brown 
University’s Center for Statistical Sciences; 
Reference is Pisano et. al., NJEM, 2005)  
 
 
Out of the 49,528 enrolled women only 42,555 were 
eligible, completed all exams and had pathology or 
follow-up information (called reference standard 
information). 
 
 
In studies of diagnostic tests, one should always 
separate the true positive cases and the true 
negative cases as determined by reference standard 
information, and analyze them separately. In this 
case there were 334 women with breast cancer and 
42,221 women without breast cancer. 
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Below is the data from the 334 women with breast 
cancer. Screen film mammograms detected 136 
women, digital mammograms detected 138, but only 
84 of these women were detected by both 
modalities. The data are displayed in this 2x2 table: 
 
Data on positive cases from DMIST trial. 

  Screen Mammogram   
  Detected Missed  

Digital 
Mammo 

Detected 84 54 138 
Missed 52 144 196 

  136 198 334 
 

 
We want to see if the proportion of detected women 
differs between the modalities. It might be tempting 
to use a simply Chi-square test for this contingency 
table, but that would be wrong because that test is 
built to examine the assumption that the rows and 
columns are independent, which they are clearly not 
(because the same women are in both groups). 
 
 
So the test we use is Mcnemar’s test. 
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McNemar’s test: 
 

  Time 2   
  Success Failure  

Time 1 Success a b a+b 
Failure c d c+d 

  a+c b+d N 
 
Let  
θ1 = P( Success | Time 1 ) = (a+b)/N 
θ2 = P( Success | Time 2 ) = (a+c)/N 
 
The null hypothesis is H0: θ1= θ2 which implies that 
E[ (a+b)/N ]= E[ (a+c)/N ]  or  E[b] = E[c].   
 
Another form of the null hypothesis is H0: θ1/ θ2=1 
or H0: θ1/(1- θ1)/ θ2/(1- θ2)=1  (Odds ratio of 
detection for Digital over screen is one) 
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Notice that (θ1 - θ2)2 = ( (b-c)/N )2, so we see that 
the difference in proportions is indeed the top of the 
test statistic, keeping the connection between the 
Chi-square test and the Z-test for difference in 
proportions.  
 
So McNemar’s test, in this form, is an approximate 
test that requires large samples to be valid. 
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Back to our DMIST example comparing sensitivity: 
 

  Screen Mammogram   
  Detected Missed  

Digital 
Mammo 

Detected 84 54 138 
Missed 52 144 196 

  136 198 334 
 
 
Here is the Stata output for our data: 
 
. mcci 84 54 52 144 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |        84          54  |       138 
       Unexposed |        52         144  |       196 
-----------------+------------------------+---------- 
           Total |       136         198  |       334 
 
McNemar's chi2(1) =      0.04    Prob > chi2 = 0.8460 
Exact McNemar significance probability       = 0.9227 
 
Proportion with factor 
        Cases       .4131737 
        Controls    .4071856     [95% Conf. Interval] 
                   ---------     -------------------- 
        difference   .005988     -.0574189    .069395 
        ratio       1.014706      .8757299   1.175737 
        rel. diff.   .010101     -.0912974   .1114995 
 
        odds ratio  1.038462       .696309   1.549997    
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Three comments:  
 
1)  Some books, like Pagano and Gauvreau, suggest 
a slightly different version of this test to help when 
some cell counts are small. Continuity correction: 
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Opinions differ on when to use this, but typically it is 
used when any cell counts are less than 5. Same 
reasoning applies for the continuity corrected version 
of the Chi-square test. 
 
2) There is no exact analytical formula for the 
variance of the difference of paired proportions. So 
the easiest way to get a confidence interval is to 
simply perform a hypothesis test for every null 
hypothesis (difference is zero, difference is 0.01, 
0.02, 0.03 etc.) and use the set of null hypotheses 
that DO NOT reject as your confidence interval. This 
procedure is known as “inverting the hypothesis 
test”, and this is how Stata gets the confidence 
interval for the difference in paired proportions.   
 
3) You should ignore the proportions for cases and 
controls that Stata provides. What you really are 
comparing here are 138/334 versus 136/334, which 
has a relative risk of 138/136=1.014 and risk 
difference of 2/334 = .00598802 (See output). 
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We can do a similar analysis for the negative cases: 
 
Data on negative cases from DMIST trial. 

  Screen Mammogram   
  Detected Missed  

Digital 
Mammo 

Detected 40409 780 41189 
Missed 894 139 1032 

  41302 919 42221 
 
. mcci 40409 780 893 139 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |     40409         780  |     41189 
       Unexposed |       893         139  |      1032 
-----------------+------------------------+---------- 
           Total |     41302         919  |     42221 
 
McNemar's chi2(1) =      7.63    Prob > chi2 = 0.0057 
Exact McNemar significance probability       = 0.0062 
 
Proportion with factor 
        Cases       .9755572 
        Controls    .9782336     [95% Conf. Interval] 
                   ---------     -------------------- 
        difference -.0026764     -.0045987  -.0007541 
        ratio       .9972641      .9953276   .9992043 
        rel. diff. -.1229597     -.2154003  -.0305192 
 
        odds ratio  .8734602       .792443   .9626051    

 
Notice that the p-value is significant (less than 0.05), 
but the estimated difference is tiny and of no clinical 
consequence (specificity is the same). 
 



 
 
McNemar’s Test and Introduction to ANOVA 
 

 
Authors: Blume, Greevy  BIOS 311 Page 12 of 25 

Based on these results, both screening modalities 
appear to have the same overall performance. 
 
Interestingly, a similar analysis was done on the 
subgroup of women less than 50 years old: 72 of 
these women had breast cancer and 14,203 did not. 
The data for young positive women are as follows: 
 
. mcci 18 17 7 30 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |        18          17  |        35 
       Unexposed |         7          30  |        37 
-----------------+------------------------+---------- 
           Total |        25          47  |        72 
 
McNemar's chi2(1) =      4.17    Prob > chi2 = 0.0412 
Exact McNemar significance probability       = 0.0639 
 
Proportion with factor 
        Cases       .4861111 
        Controls    .3472222     [95% Conf. Interval] 
                   ---------     -------------------- 
        difference  .1388889     -.0044424   .2822202 
        ratio            1.4      1.011942    1.93687 
        rel. diff.   .212766      .0315035   .3940284 
 
        odds ratio  2.428571       .957147    6.92694   (exact) 
 

So it appears the sensitivity of these tests are 
different by about 14%.  
 
Notice that the exact and approximate p-values are 
different and that the confidence interval for the 
odds ratio includes 1, but the confidence interval for 
the relative risk (‘ratio’) does not.  Discuss! 
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Looking at the proportion of positive cases that were 
detected compares the sensitivity. To examine 
specificity, we look at the group of negative cases. 
The data for young negative women are as follows: 
 
. mcci 13535 285 331 52 
 
                 | Controls               | 
Cases            |   Exposed   Unexposed  |     Total 
-----------------+------------------------+---------- 
         Exposed |     13535         285  |     13820 
       Unexposed |       331          52  |       383 
-----------------+------------------------+---------- 
           Total |     13866         337  |     14203 
 
McNemar's chi2(1) =      3.44    Prob > chi2 = 0.0638 
Exact McNemar significance probability       = 0.0697 
 
Proportion with factor 
        Cases       .9730339 
        Controls    .9762726     [95% Conf. Interval] 
                   ---------     -------------------- 
        difference -.0032388     -.0067337   .0002562 
        ratio       .9966825      .9931863   1.000191 
        rel. diff. -.1364985     -.2903823   .0173853 
 
        odds ratio  .8610272      .7323123   1.011859    
 

 
So it appears that the two tests differ slightly with 
respect to specificity, although the difference is small 
and likely uninteresting. 
 
Digital mammograms appears to have better sensitivity 
(and the same specificity) for women under 50 and 
would therefore be a (slightly) better screening test.
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Exact p-values for McNemar’s test 
 
Because McNemar’s test is based on the information 
only in the discordant pairs (the b and c off diagonal 
cells) the calculations of exact p-values is quite simple. 
 
If the null hypothesis is true, then it implies that the b 
and c cells should be equal, very informally, H0: b=c. 
These cells are just counts of people, so the underlying 
distribution has to be Binomial where ½ of the counts 
should be in each cell.  
 
That is, under the null hypothesis 
 

b~Binomial(b+c,0.5) 
 

So an exact p-value is P(b>bobs |n=b+c and θ=1/2). 
 
Example: in the subgroup of women less than 50 years 
old 72 of these women had breast cancer. Here b=17 
and c=7, so 
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. mcci 18 17 7 30 

… (See page 10) 
 
McNemar's chi2(1) =      4.17    Prob > chi2 = 0.0412 
Exact McNemar significance probability       = 0.0639 
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One Way Analysis of Variance (ANOVA) 
 
We know how to test the equality of two normal 
means: Two samples, having s  ,x  ,n  and 222  ,s  ,x  ,n 111 .   
 
Model (assumptions):  Independent observations 
from two normal distributions with means  21   ,  and 
common variance 2 . 
 
To test the hypothesis  210     :  H   (means are equal) 
vs.  21A     :  H   we use the test statistic 
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We reject H0 if the observed value of the test 
statistic exceeds the critical value found in t-table 
using n1+n2-2 degree of freedom. 
 
 
Example: For n1=10 and n2=82, the two-sided 5% 
critical value is 2.120.  
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This is the same thing if we checked to see if the 
square of the observed test statistic is bigger than 
(2.120)2 =  4.4944.  
 
Mathematically, we have 
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where the sample mean without a subscript is the 
overall mean obtained from the combined sample. 
This is sometimes called the ‘grand mean’. 
 
 
 
 This squared form of the test statistic is 

important because it shows us how to generalize 
the test for more than two groups.  
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For three groups  s  ,x  ,n  and 333  s  ,x  ,n    ,s  ,x  ,n 222111 , we 
have the same assumptions: Independent 
observations from three normal distributions with 
means  321   ,  ,  and common variance  2 . 
 
To test the hypothesis  3210   =   =   :  H  (all means 
equal, or no differences among means) versus HA: 
not all means are equal, we use the following test 
statistic: 
 
 

s
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where x  is the grand mean of  all  n  + n  +n=n 321  
observations: 
 

n  + n  + n
x n  + x n  + x n = x

321

332211
 

 
Under H 0  this statistic has an "F-distribution with 2 
and n-3 degrees of freedom." The F-distribution is 
the square of the t-distribution just like the Chi-
square is the square of the  Z-distribution. 
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More generally, when there are k groups: 
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The test statistic is    
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Clever statisticians have proved that  22

w  = )sE( , and 
that when H0  is true,  22

b  = ) sE(  as well.  But when HA 
is true,  22

b  > ) sE(  .   
 
The bigger the F-statistic, the stronger the evidence 
that the population means are not all equal. 
 
Moreover when H0 is true the ratio s/ s 2

w
2
b  has an F 

probability distribution with kn and   1k  degrees 
freedom.
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To test H 0  at level 5%, find the critical value in the F-
table and reject if the observed value s/ s 2

w
2
b  exceeds 

the critical value.  Or find the p-value in the table,  p 
=  )F  > F P( observedkn 1,k  , and reject if it is smaller 
than 5%. 
 

When k is two, the F 2n 1,   is the same as  2T 2n .  For 
example, we found that at 5% the critical value of T 
with 16 df is 2.120, so the critical value of T 2  is 
4.494.  
 
Table 9 shows that this (4.49) is indeed the critical 
value of F with 1 and 16 df. 
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ANOVA is built from the same materials as the two 
sample t-test, and the same assumptions are 
required: normal distributions with equal variances.   
 
As with the t-test, the ANOVA tests are robust 
(relatively insensitive) to failure of the normality 
assumption.   
 
There is a nonparametric alternative test (the 
Kruskal-Wallis test) that is based on the ranks of the 
observations, and does not require that the 
underlying distributions be normal.   
 
 
What do you do after the F-test rejects the hypothesis 
of no difference among the k population means, and 
you want to know which pairs of means are different?  
 
There are various complicated approaches:  The 
simplest is to test all of the possible pairs using two-
sample t-tests (with s 2

w  replacing s 2
p , so you have n-k 

df), performing all 








2

k  tests at the level α/ 








2

k .  This is 

known as a Bonferroni-adjusted α-level.   
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Adjusting the alpha (α) level 
 
There are times when it is necessary to control the 
overall Type I error and keep it from inflating. For 
example, if you design a study of a new drug with 
two primary endpoints and you consider the test a 
success if the drug performs better on either 
endpoint. You may constrain the overall type I error 
to an α-level by testing each endpoint at the α/2 
level, so that the total chance of making a Type I 
error in this study would be α. 
 
There are a variety of opinions about whether this 
makes sense. The basic conflict is in figuring out 
which error you want to control: the error for an 
individual endpoint or the overall error for a study. 
 
Controlling the overall error can lead to weird results 
because now rejection of one endpoint depends on 
how many other endpoints you decide to test.  
 
For example, one endpoint might yield a p-value of 
0.04, which would reject the null at the 5% level and 
conclude the drug works. But if you have two 
endpoints and constrain the overall error to 5% by 
testing each endpoint a 2.5% level, then you would 
fail to reject and conclude the drug does not work. 
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To make matters worse, both procedures have an 
overall 5% error rate. So you can only claim rejection 
at the 5% level in either case. 
 
Procedures like this make people wonder if statisticians 
really have their head screwed on straight: The drug 
works if you did not test the other endpoint, but it does 
not work if you did.  
 
This is a fascinating, but endless debate. The problem 
is that modern statistics uses one quantity (the tail 
area, either as a p-value or type I error) to do two 
things: (1) measure the strength of evidence against 
the null hypothesis and (2) tell me how often I make a 
mistake.  
 
And it makes sense to adjust #2, but not #1. The only 
way this can be resolved is to trash this approach and 
try something new (like using a likelihood ratio to 
measure the strength of evidence and calculating its 
Type I and Type II error). 
 
Blume and Peipert “What your statistician never told 
you about p-values” (2003) has a nice discussion of 
this point. 
 
“In fact, as a matter of principle, the infrequency with 
which, in particular circumstances, decisive evidence is 
obtained, should not be confused with the force, or 
cogency, of such evidence.” [Fisher, 1959] 
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Single endpoint: 
Frequentist error rates (Type I and Type II; reject 
when in the tails) along with likelihood error rates 
(reject when the likelihood ratio is greater than 1). 
Adjusting the Type I error to keep it at 5%. 
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Overall endpoints: 
Frequentist error rates (Type I and Type II; reject 
when in the tails) along with likelihood error rates 
(reject when the likelihood ratio is greater than 1). 
Adjusting the Type I error to keep it at 5%. 
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**Sample Size is relative to this example; but ordering holds in general
*Likelihood is not affected by multiple endpoints

Likelihood ( both errors )
Traditional ( 0 Saftey endpoints)
Traditional ( 3  Saftey endpoints)

Type I Error (s)

Type II Error (s)
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Plots of the average error rates ((type I+ type II)/2) 
for hypothesis testing and likelihood inference. 
Multiple endpoints are included along with the 
adjusted and not adjusted results for hypothesis 
testing.  
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*Adjustment for multiple endpoints creates additional problems and is not uniformly recommened
**Sample Size is relative to this example; but ordering holds in general
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