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Graphically Assessing Normality 
 
We tend to look at the histogram of a dataset to 
assess its distribution, but better plots exits.  For a 
sample yi, for i = 1 to n, that’s been sorted so that 
i=1 is the smallest observation and i=n is the 
largest, consider making a scatter plot of (xi, yi) 
where xi solves F(xi) = i/(n+1) for a comparison 
distribution F.  In other words, plot your data against 
the theoretical quantiles of a known distribution to 
see how it compares.  In the case of the normal 
distribution, you’d plot (Zi/(n+1), yi).  
 
If your sample comes from the comparison 
distribution then the distance between any two 
percentiles in your dataset should be proportional to 
the distance between the theoretical percentiles 
(save for sampling variation).  This is easier seen 
than said, so let’s play with some examples in R.  
 
 
# Example 1: Systolic BPs in nonhypertensives 
 
n = 10^4 
 
y <- rnorm(n, 120, 10); hist(y);   
 
qqnorm(y); qqline(y);  
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# Example 2: t distribution with 12 df 
y <- rt(n, 12); hist(y); 
qqnorm(y); qqline(y);  
 
 

# Example 3: t distribution with 3 df 
y <- rt(n, 3); hist(y); 
qqnorm(y); qqline(y);  
 
 
# Example 4: Binomial(100, 0.7) 
y <- rbinom(n, 100, 0.7); hist(y); 
qqnorm(y); qqline(y);  
 
 
 

# Example 5:lognormal, mean=0, sd=1 for log(dist) 
y <- rlnorm(n); hist(y);  
qqnorm(y); qqline(y);  
 
 
 
Now change to n = 10^2.  Look at lots of different 
random samples, especially in the normal case.  Get 
a sense of how sampling variability can play a big 
role when n isn’t enormous.
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Non-Parametric (Distribution-Free) Tests 

 
The Simple Sign Test 
 
Here are data on six patients with cystic fibrosis.  
Each measurement shows the reduction (ml) in 
forced vital capacity over a 25 week period.  For 
each patient there are two measurements, one for a 
period when he was being given a drug intended to 
slow the process of FVC reduction, and one for a 
period when he was being given a placebo.   
 
 
 

 FVC Reduc (ml)   
Subj Placebo Drug Difference Sign 

1 224 213 11 + 
2 80 95 -15 - 
3 75 33 42 + 
4 541 440 101 + 
5 74 -32 106 + 
6 85 -28 113 + 

 
 
 
The outcome of interest here is “difference”, which is 
really a difference in reductions between two 
treatments.  (To make this a useful teaching example, we are 
using only part of the data from P&G Table 13.1.)  
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How can we test the (null) hypothesis that the drug 
is equivalent to the placebo?  
 
One possibility is the t-test on the six paired 
differences,  D = Placebo minus Drug.  The test 
statistic is S /  D n D , which has a Student's t 
distribution with 5 df if the D's are iid normal with 
mean zero.  The value of this test statistic is 2.672, 
giving a p-value of  0.022 (one-sided). 
 
 
Worried about non-normality?  Then we must find 
another test statistic.  Recall that two properties are 
required: 
 
(1)  The more extreme the value of the test statistic, 

the stronger the evidence is against Ho.  
 
(2)  The distribution of the test statistic, when Ho is 

true is known. 
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Here is a candidate: Let X be the number of positive 
differences, and use X itself as the test statistic.   
 
 
It satisfies the two conditions: 
 
(1)  A positive difference means that FVC loss is less 

under the drug, so the more positive 
differences, the stronger the evidence that the 
drug works as intended. 

 
(2)  Under  Ho,  X  has a Binomial(6, 0.5) 

distribution. 
 
Why?  What are we assuming about F(diffs | Ho)? 
 
With this test statistic, the p-value is the probability 
of getting as many positive differences as we 
observed or more, in this example getting 5 or 6.   
 
It tests the null hypothesis (no difference between 
drug and placebo) against the alternative that the 
drug works as expected.   
 
(The two-sided p-value is the probability of 5 or 
more positive differences or 5 or more negative 
ones, and is just twice the one-sided p-value.  It 
tests the null hypothesis against the alternative that 
the drug has an effect, either in the expected 
direction or the other.) 



 
 
Non-Parametric Tests 
 

 
Author: Blume, Greevy             BIOS 311 Page 6 of 22 

 
 
This test procedure is called the "sign test."  It does 
not require that the differences have a normal 
distribution.   
 
It is valid so long as  
 
(a)  the differences are independent, and  
 
(b)  when the hypothesis of no difference between 

drug and placebo is true, each of the differences 
is just as likely to be positive as negative. 

 
 
This would be true if, for example, an independent 
coin toss determined which treatment each patient 
got first, the drug or the placebo, and the study was 
"double blind," so that neither the patient nor the 
researcher knew which treatment the patient was on 
at any given time until after all the measurements 
had been made. 
 
 
 Tests like the sign test, which do not require 

that the distribution have any particular form 
(like the normal, Poisson, etc.) are called 
"distribution-free" or "non-parametric" tests. 
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For such tests, the correctness of the p-value can 
often be guaranteed by the researcher's act of 
randomly assigning treatments, as it could in this 
example if the coin-tossing assignment scheme were 
actually used. 
 
 
If some of the observed differences are zero, one 
approach is to drop them from the analysis when 
using the sign test, reducing the sample size 
accordingly.  
 
 
(STATA (‘signtest’) does not do this—it counts each 
zero as half a positive difference and half a negative 
one, and makes an appropriate adjustment in 
calculating the p-value if the total number of 
positives is not an integer.) 
 
 
 For sample size n, the sign test simply counts 

the number of positive observations (which has 
a Binomial(n,θ) probability distribution) and 
tests the hypothesis that θ=1/2. 
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The Wilcoxon Signed Rank Test 
  
The sign test is neat, but inefficient. It looks only at 
the signs of the differences, ignoring their 
magnitudes.   
 
In our example the absolute differences ranged from 
11 ml to 113.  Not only did we see just one negative 
difference, it was one of the two smallest.  All of the 
four biggest changes were in the right direction.  
This important information is overlooked by the sign 
test. 
 
 
 

 FVC Reduc (ml)   
Subj Placebo Drug Difference Sign 

1 224 213 11 + 
2 80 95 -15 - 
3 75 33 42 + 
4 541 440 101 + 
5 74 -32 106 + 
6 85 -28 113 + 

 
 
A test that pays some attention to how big the 
differences are, as well as to their signs, is the 
Wilcoxon Signed Rank Test.   
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It ranks the observations according to magnitude 
(absolute value), from smallest (rank=1) to largest 
(rank=n), and takes as the test statistic the sum of 
the ranks of the positive observations.   
 
 

 FVC Reduc(ml)    
Subj Placebo Drug Diff. Sign Rank 

1 224 213 11 + 1 
2 80 95 -15 - 2 
3 75 33 42 + 3 
4 541 440 101 + 4 
5 74 -32 106 + 5 
6 85 -28 113 + 6 

 
 
It says, in effect, that while all differences that are 
positive are evidence in favor of the drug, a large 
positive difference is stronger evidence than a small 
one.  
 
This test statistic, call it R+ , satisfies our two 
conditions, since  
 
(1)  The bigger it is, the stronger the evidence in 

favor of the drug. 
 
(2)  We can figure out its exact distribution under 

the null hypothesis. 
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The reason we can find the exact distribution is that 
under the null hypothesis, every way of assigning + 
and - signs to the ranks (1, 2, ..., n) has the same 
probability, (1/2)n.   
 
To get the p-value, we simply count up how many of 
these equally probable patterns of  +'s and -'s give a 
rank sum,  R+ , as big or bigger than the one we 
observed. 
 
In our little example, the observed sum of the 
positive ranks is 1+3+4+5+6 = 19.  (Only the 
second-ranked difference was negative). 

 
 
 

Ranks                                Signs___________________                   
           1       +   -    +   +   -    +   -    +   -    +   +   -    +   -   
           2       +   +   -    +   -    +   +   +   +   -    +   +   -    -   
           3       +   +   +   -    +   +   -    +   +   -    +   +   +   -   
           4       +   +   +   +   +   -    +   +   -    +   +   +   -    +   
           5       +   +   +   +   +   +   +   -    +   +   +   -    +   +   
           6       +   +   +   +   +   +   +   +   +   +    -   +   +   +   
 
          R+     21  20   19  18  18  17  17 16 16   16 15 15 15 15... 
 
          R      0    1     2   3   3    4   4   5   5   5   6   6   6   6 ... 

Ranks          21 21 21 21...                                           ...21... 
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Since the probability of each column is (1/2)6  = 1/64, 
the probability of observing  R+   19 is  3/64 = 0.0469  
under the null hypothesis.  This is the one-sided p-
value for our sample. 
 
 
The sum of the ranks of positive observations, R+ , 
and the sum of the ranks of the negative ones,  R , 
together must equal the sum of all the ranks, 
 R+  + R  = 1 + 2 + ... + n = n(n+1)/2.   
 
 
 
Therefore the test that rejects if R+  is too large is 
equivalent to a test that rejects if R  is too small. 
 
 
 
For example in our problem, R+ +R= 21, so R+   19  
is equivalent to the condition R   2.  Either way, the 
p-value is the same: 
 
 
  P(R+   19) = P(R   2) = 3/64 = 0.0469. 
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There are tables that give the two-sided critical 
values for a given sample size.  For example, with 6 
observations and 0 ties, n = 6-0 = 6.  The alpha = 
0.10 level critical values are 2 and 19.  The alpha = 
0.05 level critical values are 0 and 21.  There are no 
values for alpha = 0.02.  Why? 
 
 
Such tables cover only a small range of sample sizes. 
When the number of observations gets even 
moderately large, a normal approximation is used.   
 
Under the null hypothesis, it is easy to show that R+  
has  

E[R+]=n(n+1)/4 
Var[R+]=n(n+1)(2n+1)/24 

 
(and  R  has the same mean and variance).  
Additionally it is less easy, but still possible, to show 
that  
 
 
 

  
24

1)+1)(2n+(n n
4

1)+(n n
   R+ 

 ~approx N(0,1) 
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Approximate p-values are then found in a Z-table.  
 
This approximation works well, even for moderate n, 
because under the null hypothesis, the distribution of 
R+  is symmetric about its expected value, and not 
skewed at all.   
 
Even computer packages, which could easily 
calculate exact p-values, use this approximation. In 
fact, if their manual can be believed, (which is 
doubtful) STATA uses the normal approximation (the 
Z-test) for all sample sizes. Even a sophisticated 
package like S-plus uses the normal approximation 
(with a continuity correction) for n>25. 
 
Some suggest that any zero differences should be 
dropped from the analysis, as they were in the sign 
test, with the sample size reduced accordingly. 
STATA (‘signrank’) does not do this, (according to 
the manual).  It adds one-half of the rank of a zero 
observation to R+ , and one-half to R , etc.  
 
If some of the differences have equal magnitudes 
(tied observations), they are all assigned a rank 
equal to the average of the ranks that they would 
have if they weren't tied. 
 
Aside: There is a fancier solution for handling ties 
that also uses normal approximation solution.
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The Wilcoxon (Mann-Whitney) Rank Sum Test 
 
The sign test and the Wilcoxon signed-rank test are 
for single samples, like the one-sample t-test.  (Think 
of another one-sample example where you would test 
Ho: µ=µo and how you would use the Wilcoxon test.) 
 
The distribution-free alternative to the two-sample t-
test is the Wilcoxon Rank Sum Test. 
 
(There is another candidate, the Mann-Whitney U-
Test, which looks entirely different, but which turns 
out to be equivalent to Wilcoxon's test.  For this 
reason, various combinations of the three names, 
Wilcoxon, Mann, and Whitney, are sometimes used to 
identify this test.)   
 
The model asserts that the two samples are 
independent, and the null hypothesis states that they 
come from the same probability distribution.  Just as 
with the one-sample Wilcoxon test, no assumption 
about the precise form of this common probability 
distribution is required. 
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If the alternative hypothesis specifies that the two 
distributions are not the same, and that observations 
from a specified one (say the first) will tend to be 
larger, then a one-sided test is appropriate.  
 
If it simply states that one sample will tend to be 
larger, without specifying which one, a two-sided test 
is called for. 
 
The test is again based on the ranks of the 
observations. We begin by ordering all of the 
observations (both samples combined, with their 
signs intact) from smallest to largest, and assigning 
ranks, 1, 2, ..., n +n 21 .  Let R1 be the sum of the ranks 
of the n1  observations in sample 1 and R2  be the sum 
of the ranks of the n2  observations in sample 2. 
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The test statistic (one-sided test) is the sum of the 
ranks of the sample whose members, according to 
the alternative hypothesis, will tend to be larger.  
Suppose this is sample 1, so the test statistic is R1 . 
 
(1)  The larger R1  is, the stronger the evidence that 

sample 1 observations tend to be larger, just as 
the alternative hypothesis predicted. 

 
(2)  The probability distribution of R1 , under the null 

hypothesis, is known. 
 
The reason (2) is true is that the complete set of 
ranks (i.e., the integers, 1, 2, ..., n+n 21 ) is fixed. 
Observations in sample 1 will get some (n1) of these 
ranks, and the rest will go to sample 2.  
 
Under the null hypothesis, the particular set of n1  
ranks that go to sample 1 is determined by a process 
equivalent to choosing a simple random sample of n1  
from the complete set of ranks.   
 
It is as if we put  n+n 21  pieces of paper, numbered 1, 
2, ...,  n +n 21 , into a hat, and drew out n1  of them 
(without replacement).  
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From this we can calculate the exact probability 
distribution of R1  under the null hypothesis. 
 
For example, the smallest possible value of R1  is the 
sum of the n1  smallest ranks, 1 + 2 + ... + n1  = 
n1(n1+ 1)/2, and the probability of this value is  
 












n

n +n

1

1

21

 

 
When the alternative hypothesis specifies that 
observations in sample 1 will tend to be larger, the 
p-value is P(R1   R obs 1 ). 
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Example:    Sample 1:  10, 12, 19, 20      (n1= 4 ) 

Sample 2: -15, -2,   1, 9, 15    (n2 = 5 ) 
 
 
                                                            
Sample 1                        
Combined sample: -15, -2,   1,   9,  10,  12, 15, 19, 20  
Ranks                      1   2    3     4    5    6     7    8    9 
 
                  R obs  1  
Observed  Sample 1 Ranks                5    6         8    9   28  
                                                 4               7    8    9   28 
                                                       5         7    8    9   29 
                                                             6   7    8    9   30 
 
 
 
The one-sided p-value is 
 
 
  0.032 = 

126

4
 = 

  4

  9
4

 = ) R   R P( obs  11









  

 
 
Because there are 4 such outcomes ‘more extreme’ 
than R1 =28.
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As with the one-sample rank test, tables exist for 
two-sample critical values for different alphas. 
 
When the sample sizes get moderately large, a 
normal approximation is used instead of the exact p-
value. For the rank sum from sample 1,  
 

 
12

1)+n +n (nn
2

1)+n +n ( n    R

2121

211
1 

 

 
When there are ties (more than one observation with 
the same value), all observations with the same 
value are given the average rank that they would 
have if there were no ties.  For example, if the 7th, 
8th, 9th, and 10th largest observations are all equal, 
they are all given rank (7+8+9+10)/4 = 8.5. 
 
When there are only a few ties, they are sometimes 
ignored, but there is a correction for ties that is often 
used when the Wilcoxon rank sum test is applied to 
"highly tied" data. 



 
 
Non-Parametric Tests 
 

 
Author: Blume, Greevy             BIOS 311 Page 20 of 22 

 
 
So for a single sample (which often consists of 
differences between two paired samples), for testing 
the hypothesis that the mean is zero, we can use the 
test statistic 
 
 

S
X n

n

n , 

 
 
looking up the p-value in a t-table.  This test is exact 
only when the distribution is normal.  For a non-
normal distribution the test is only approximate, but 
when n is large (and the p-value comes from a Z-
table) the approximation is very good.  
 
 
 
As alternatives, we have the sign test and the 
Wilcoxon signed rank test.  If the distribution is 
normal, these tests are less powerful than the t-test.  
But their Type I error probabilities (and  p-values) 
are exact under much more general conditions. 
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Similarly, for testing whether two normal 
distributions are the same, vs the alternative that 
they have different means, we have, as an 
alternative to the two-sample t-test (which is exact 
only when the distributions are normal), the 
Wilcoxon rank sum test. It has less power when the 
distributions are normal, but exact size under much 
more general conditions. 
 
The best place to learn more about nonparametric 
tests is in books that specialize in that topic. General 
statistical methods books are sometimes not very 
accurate in their treatment of nonparametric 
methods.  
 
For example, the awkward question about whether 
the two distributions have equal variances, which is 
so annoying when two normal distributions are being 
compared, cannot be avoided by using the Wilcoxon 
rank sum test instead of the t-test. The correctness 
of the rank test's p-value can be upset by inequality 
of the variances, just like the t-test's p-value can.   
 
 
Many general statistical methods books are 
inaccurate on this point. 
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Distribution-free ("non-parametric") tests have some 
advantages. 
 
(1) They enable you to calculate exact significance 

levels and p-values for small samples when the 
precise form of the distribution is not known. 

 
(2) They can be used with "ordinal" data, when the 

observations are ordered or consist of ordered 
categories, like "poor", "fair", and "good," but do 
not have meaningful numerical values. 

 
(3) They are insensitive to gross numerical errors.   
 
 
 
Distribution-free tests also have disadvantages.  One 
is their loss of power, compared to parametric tests 
like Student's t, when the parametric tests are valid.   
 
 
A more important disadvantage, and the one that 
probably explains why non-parametric tests have not 
achieved greater popularity, is that they have no 
natural, easily-understood, link to estimation, like 
the link between the t-test and the sample mean. 


