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Chapter 1

Introduction

1.1 Hypothesis Testing, Estimation, and Prediction

Even when only testing Hy, a model based approach has advantages:

* Permutation and rank tests not as useful for estimation
* Cannot readily be extended to cluster sampling or repeated measurements

* Models generalize tests

— 2-sample t¢-test, ANOVA —
multiple linear regression

— Wilcoxon, Kruskal-Wallis, Spearman —
proportional odds ordinal logistic model

— log-rank — Cox

* Models not only allow for multiplicity adjustment but for shrinkage of esti-

2



CHAPTER 1. INTRODUCTION 3

mates

— Statisticians comfortable with P-value adjustment but fail to recognize
that the difference between the most different treatments is badly biased

Statistical estimation is usually model-based

* Relative effect of increasing cholesterol from 200 to 250 mg/dl on hazard of
death, holding other risk factors constant

* Adjustment depends on how other risk factors relate to hazard

*+ Usually interested in adjusted (partial) effects, not unadjusted (marginal or
crude) effects

1.2 Examples of Uses of Predictive Multivariable Modeling

* Financial performance, consumer purchasing, loan pay-back
* Ecology

* Product life

* Employment discrimination

* Medicine, epidemiology, health services research

* Probability of diagnosis, time course of a disease

* Comparing non-randomized treatments
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* Getting the correct estimate of relative effects in randomized studies requires
covariable adjustment if model is nonlinear
— Crude odds ratios biased towards 1.0 if sample heterogeneous

* Estimating absolute treatment effect (e.g., risk difference)

— Use e.g. difference in two predicted probabilities

* Cost-effectiveness ratios

— incremental cost / incremental ABSOLUTE benefit

— most studies use avg. cost difference / avg. benefit, which may apply to
no one

1.3 Planning for Modeling

* Chance that predictive model will be used

* Response definition, follow-up

* Variable definitions

* Observer variability

* Missing data

* Preference for continuous variables

* Subjects
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Sites

lezzoni lists these dimensions to capture, for patient outcome studies:

—h
e © o N o bk 0D -

—

age

sex

acute clinical stability

principal diagnosis

severity of principal diagnosis

extent and severity of comorbidities

physical functional status

psychological, cognitive, and psychosocial functioning
cultural, ethnic, and socioeconomic attributes and behaviors
health status and quality of life

patient attitudes and preferences for outcomes

1.4 Choice of the Model

* In biostatistics and epidemiology we usually choose model empirically

* Model must use data efficiently

* Should model overall structure (e.g., acute vs. chronic)

* Robust models are better

* Should have correct mathematical structure (e.g., constraints on probabili-

ties)



CHAPTER 1. INTRODUCTION 6

1.5 Model uncertainty / Data-driven Model Specification

- Standard errors, C.L., P-values, R? wrong if computed as if the model pre-
specified

* Stepwise variable selection is widely used and abused

* Bootstrap can be used to repeat all analysis steps to properly penalize vari-
ances, etc.

* Ye : “generalized degrees of freedom” (GDF) for any “data mining” or model
selection procedure based on least squares

— Example: 20 candidate predictors, n = 22, forward stepwise, best 5-
variable model: GDF=14.1

— Example: CART, 10 candidate predictors, n = 100, 19 nodes: GDF=76



Chapter 2

Simple Linear Regression

Rosner 11.1-6

2.1 Notation

* y : random variable representing response variable

* x : random variable representing independent variable (subject descriptor,
predictor, covariable
— conditioned upon

— treating as constants, measured without error

* What does conditioning mean?

— holding constant
— subsetting on

— slicing scatterplot vertically
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O @D abo

Figure 2.1: Data from a sample of n = 100 points along with population linear regression line. The
x variable is discrete. The conditional distribution of y|x can be thought of as a vertical slice at x.
The unconditional distribution of y is shown on the y-axis.
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* E(y|x) : population expected value or long-run average of y conditioned on
the value of x
Example: population average blood pressure for a 30-year old

* « : y-intercept
* 3 : slope of y on x (3%)

Simple linear regression is used when

* Only two variables are of interest
* One variable is a response and one a predictor
* No adjustment is needed for confounding or other between-subject variation

* The investigator is interested in assessing the strength of the relationship
between = and y in real data units, or in predicting y from z

* A linear relationship is assumed (why assume this? why not use nonpara-
metric regression?)

* Not when one only needs to test for association (use Spearman’s p rank
correlation) or estimate a correlation index

2.2 Two Ways of Stating the Model

* E(ylr) = a+ fx

*y=a+pfr+e
e is a random error (residual) representing variation between subjects in y
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even if x is constant, e.g. variation in blood pressure for patients of the same
age

2.3 Assumptions, If Inference Needed

- Conditional on z, y is normal with mean « + 3z and constant variance o2, or:

* e is normal with mean 0 and constant variance o2

* E(ylz) = E(a+ fr+e) =a+ fzr+ Ee),
Ele) =

ylz) =
(e) = 0.

* Observations are independent

2.4 How Can o and 3 be Estimated?

* Need a criterion for what are good estimates

* One criterion is to choose values of the two parameters that minimize the
sum of squared errors in predicting individual subject responses

* Let a, b be guesses for a,
* Sample of size n : (x1,v1), (z2,¥2), - - -, (Tn, Yn)
* SSE =" (y; — a — bx;)?

* Values that minimize SSFE are least squares estimates
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* These are obtained from

* Note: A term from L,, will be positive when x and y are concordant in terms
of both being above their means or both being below their means.

2.5 Inference about Parameters

* Residual: d =y — 9

* d large if line was not the proper fit to the data or if there is large variability
across subjects for the same «

* Beware of that many authors combine both components when using the
terms goodness of fit and lack of fit

* Might be better to think of lack of fit as being due to a structural defect in the
model (e.g., nonlinearity)

* SST =¥ (yi — §)*
SSR = (4; — )*
SSE =>(y; — 1:)?
SST =SSR+ SSE
SSR=SST - SSE

+ SSincreases in proportion to n

* Mean squares: normalized for for d.f.: ;7%
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* MSR = SSR/p, p =no. of parameters besides intercept (here, 1)
MSE = SSE/(n—p— 1) (sample conditional variance of y)
MST = SST/(n — 1) (sample unconditional variance of y)

* Brief review of ordinary ANOVA (analysis of variance):

— Generalizes 2-sample t-test to > 2 groups
— SSRis SS between treatment means

- SSE is SS within treatments, summed over treatments

* ANOVA Table for Regression

Source d.f. SS  MS F
Regression p SSR MSR=SSR/p MSR/MSE
Error n—p—1 SSE MSE=SSE/(n—p—1)

Total n—1 SST MST =SST/(n—1)

+ Statistical evidence for large values of 3 can be summarized by F = 52

* Has F’ distribution with p and n — p — 1 d.f.

* Large values — || large

2.6 Estimating o, S.E. of j3; i-test
"5, =0"=MSE = Var(y|z) = Var(e)

+ 52(b) = 8,0/ L

*t=>b/se(b),n—p—1d.f.

12
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‘t?=Fwhenp=1
*tp2 = \/Fin—2
* ¢ identical to 2-sample t¢-test (x has two values)

* If x takes on only the values 0 and 1, b equals y when x = 1 minus y when
r =0

2.7 Interval Estimation

Rosner 11.5

+ 2-sided 1 — o Cl for 6: b+ tn_2’1_a/2§é(b)

* Cl for predictions depend on what you want to predict even though 3 esti-
mates both y 2 and E(y|x)

- Notation for these two goals: j and E(y|z)

— Predicting y with ¢ :
SE.(§) = syayf1+ L+ 2
Note: This s.e. — s,., as n — oo.

— Predicting E(y|xz) with §:
se.(E(y|r)) = syay/2 + - See footnote®
Note: This s.e. shrinks to 0 as n — oo

* 1 — a 2-sided CI for either one:
@ + tn—p—l,l—a/QS/-E-

aWith a normal distribution, the least dangerous guess for an individual y is the estimated mean of y.

by, here is the grand total number of observations because we are borrowing information about neighboring z-points, i.e., using interpolation.
If we didn’t assume anything and just computed mean y at each separate x, the standard error would instead by estimated by s.. 4/ % where
m is the number of original observations with = exactly equal to the « for which we are obtaining the prediction. The latter s.e. is much larger
than the one from the linear model.
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* Wide ClI (large s-e.) due to:

—smalln
— large o?
— being far from the data center (z)

* Example usages:

— Is a child of age = smaller than predicted for her age?
Use s.e.(y)

— What is the best estimate of the population mean blood pressure for pa-

tients on treatment A?
Use s.e.(E(y|x))

* Example pointwise 0.95 confidence bands:
+x 1 3 5 6 7 9 11
y: 5 10 70 58 85 89 135

2.8 Assessing Goodness of Fit

Rosner 11.6

Assumptions:

1. Linearity
2. o2 is constant, independent of
3. Observations (e’s) are independent of each other

4. For proper statistical inference (Cl, P-values), y (e) is normal conditional on
T

Verifying some of the assumptions:
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150 -

100 -

50 A

0 2 4 6 8 10 12

Figure 2.2: Pointwise 0.95 confidence intervals for j (wider bands) and E(y|x) (narrower bands).

* In a scattergram the spread of y about the fitted line should be constant as
x increases, and y vs. x should appear linear

- Easier to see this with a plot of d = y — § vs. §

* In this plot there are no systematic patterns (no trend in central tendency, no
change in spread of points with z)

* Trend in central tendency indicates failure of linearity

* qgnorm plot of d
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Figure 2.3: Using residuals to check some of the assumptions of the simple linear regression model.
Top left panel depicts non-constant o2, which might call for transforming y. Top right panel shows
constant variance but the presence of a systemic trend which indicates failure of the linearity as-
sumption. Bottom left panel shows the ideal situation of white noise (no trend, constant variance).
Bottom right panel shows a q — q plot that demonstrates approximate normality of residuals, for

a sample of size n = 35. Horizontal reference lines are at zero, which is by definition the mean
of all residuals.



Chapter 3

Multiple Linear Regression

Rosner 11.9

3.1 The Model and How Parameters are Estimated

* p independent variables z;, zs, ..., x,

* Examples: multiple risk factors, treatment plus patient descriptors when ad-
justing for non-randomized treatment selection in an observational study

* Each variable has its own effect (slope) representing partial effects: effect of
increasing a variable by one unit, holding all others constant

* Initially assume that the different variables act in an additive fashion
* Assume the variables act linearly against y
* Model: y = a+ Bizy + Boxa + ... + By, + €

* Or: E<y|$) =a+ bix1 + 52332 + ..+ ﬁpﬂjp

17
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* For two z-variables: y = a + (121 + foxo
* Estimated equation: §y = a + byx1 + boxs

* Least squares criterion for fitting the model (estimating the parameters):
SSE = 2?21[9 — (a + bll'l + b2$2)]2

* Solve for a, by, b, to minimize SSE

* When p > 1, least squares estimates require complex formulas; still all of the
coefficient estimates are weighted combinations of the y’s, > w;y;2.

3.2 Interpretation of Parameters

* Regression coefficients are (b) are commonly called partial regression co-
efficients: effects of each variable holding all other variables in the model
constant

* Examples of partial effects:

— model containing x;=age (years) and z,=sex (0O=male 1=female)
Coefficient of age (5,) is the change in the mean of y for males when age
increases by 1 year. It is also the change in y per unit increase in age
for females. [, is the female minus male mean difference in y for two
subjects of the same age.

— E(y|x1,z2) = a+piz for males, a+ fix1+ G2 = (a+52) + 1z for females
[the sex effect is a shift effect or change in y-intercept]

— model with age and systolic blood pressure measured when the study
begins

aWhen p = 1, the w; for estimating 3 are 227’1)2
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Coefficient of blood pressure is the change in mean y when blood pres-
sure increases by 1mmHg for subjects of the same age

* What is meant by changing a variable?

— We usually really mean a comparison of two subjects with different blood
pressures

— Or we can envision what would be the expected response had this sub-
ject’s blood pressure been 1TmmHg greater at the outset®

— We are not speaking of longitudinal changes in a single person’s blood
pressure

— We can use subtraction to get the adjusted (partial) effect of a variable,
e.g., E(y|z1, x2) — fars = a + Bia:

* Example: y = 37+ .01 x weight + 0.5 x cigarettes smoked per day

— .01 is the estimate of average increase y across subjects when weight is
increased by 1lb. if cigarette smoking is unchanged

— 0.5 is the estimate of the average increase in y across subjects per addi-
tional cigarette smoked per day if weight does not change

— 37 is the estimated mean of y for a subject of zero weight who does not
smoke

* Comparing regression coefficients:

— Can’t compare directly because of different units of measurement. Coef-
ficients in units of .

bThis setup is the basis for randomized controlled trials. Drug effects may be estimated with between-patient group differences under a
statistical model.
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— Standardizing by standard deviations: not recommended. Standard devi-
ations are not magic summaries of scale and they give the wrong answer
when an x is categorical (e.g., sex).

3.3 Hypthesis Testing

Rosner 11.9.2

3.3.1 Testing Total Association (Global Null Hypotheses)

* ANOVA table is same as before for general p

*FpnpatestsHy: 51 =0=...=05,=0

* This is a test of total association, i.e., a test of whether any of the predictors
is associated with y

* To assess total association we accumulate partial effects of all variables in
the model even though we are testing if any of the partial effects is nonzero

* H, : at least one of the §’s is non-zero. Note: This does not mean that all of
the z variables are associated with y.

* Weight and smoking example: H tests the null hypothesis that neither weight
nor smoking is associated with y. H, is that at least one of the two variables
is associated with y. The other may or may not have a non-zero (.

* Test of total association does not test whether cigarette smoking is related
to y holding weight constant.

* SSR can be called the model SS
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3.3.2 Testing Partial Effects

* Hy : 0y = 0is a test for the effect of x; on y holding x, and any other z’s
constant

* Note that 3, is not part of the null or alternative hypothesis; we assume that
we have adjusted for whatever effect x5 has, if any

* One way to test 3, is to use a t-test: ¢,,_,_; = %@bl)

* In multiple regression it is difficult to compute standard errors so we use a
computer

* These standard errors, like the one-variable case, decrease when

-n T
— variance of the variable being tested |

— o2 (residual y-variance) |

* Another way to get partial tests: the F test

— Gives identical 2-tailed P-value to ¢ test when one z being tested
t? = partial F

— Allows testing for > 1 variable

— Example: is either systolic or diastolic blood pressure (or both) associ-
ated with the time until a stroke, holding weight constant

* To get a partial F' define partial SS
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* Partial SS is the change in S'S when the variables being tested are dropped
from the model and the model is re-fitted

* A general principle in regression models: a set of variables can be tested
for their combined partial effects by removing that set of variables from the
model and measuring the harm (7 SSFE) done to the model

* Let full refer to computed values from the full model including all variables;
reduced denotes a reduced model containing only the adjustment variables
and not the variables being tested

* Dropping variables T SSE, | SSR unless the dropped variables had exactly
zero slope estimates in the full model (which never happens)

* SSEreduced - SSEfull = SSRfull - SSRTeduced
Numberator of F' test can use either SSE or SSR

* Form of partial F'-test: change in SS when dropping the variables of interest
divided by change in d.f., then divided by M SFE;
MSE is chosen as that which best estimates o2, namely the M SE from the
full model

* Full model has p slopes; suppose we want to test ¢ of the slopes

(SSEreduced - SSEfUU)/q

MSE
(SSRyu — SSRreduced) /4

MSE

F gn—p-1 —

3.4 Assessing Goodness of Fit

Rosner 11.9.3

Assumptions:
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* Linearity of each predictor against y holding others constant
- 0% is constant, independent of
* Observations (e’s) are independent of each other

* For proper statistical inference (Cl, P-values), y (e) is normal conditional on
T

* 2’s act additively; effect of x; does not depend on the other z’s (But note
that the z’s may be correlated with each other without affecting what we are
doing.)

Verifying some of the assumptions:

1. When p = 2, z is continuous, and z is binary, the pattern of y vs. x, with
points identified by z», is two straight, parallel lines. [, is the slope of y vs.
x9 holding z; constant, which is just the difference in means for x5 = 1 vs.
o = 0 as Axy = 1 in this simple case.

2. In a residual plot (d = y — g vs. y) there are no systematic patterns (no trend
in central tendency, no change in spread of points with 3). The same is true
if one plots d vs. any of the z’s (these are more stringent assessments). If x,
is binary box plots of d stratified by z, are effective.

3. Partial residual plots reveal the partial (adjusted) relationship between a cho-
sen z; and y, controlling for all other z;,7 # j, without assuming linearity for
z;. In these plots, the following quantities appear on the axes:

y axis: residuals from predicting y from all predictors except z;
x axis: residuals from predicting z; from all predictors except z; (v is ig-
nored)

Partial residual plots ask how does what we can’t predict about y without
knowing z; depend on what we can't predict about z; from the other z’s.
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x1

Figure 3.1: Data satisfying all the assumptions of simple multiple linear regression in two predictors.
Note equal spread of points around the population regression lines for the x5 = 1 and x5 = 0
groups (upper and lower lines, respectively) and the equal spread across x;. The x5 = 1 group
has a new intercept, o + 35, as the z, effect is .
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3.5 What are Degrees of Freedom

For a model : the total number of parameters not counting intercept(s)

For a hypothesis test : the number of parameters that are hypothesized to
equal specified constants. The constants specified are usually zeros (for
null hypotheses) but this is not always the case. Some tests involve com-
binations of multiple parameters but test this combination against a single
constant; the d.f. in this case is still one. Example: H, : §3 = (4 is the same
as Hy: 53—y =0andis a1 d.f. test because it tests one parameter (53 — (54)
against a constant (0).

These are numerator d.f. in the sense of the F-test in multiple linear regression.
The F-test also entails a second kind of d.f.,, the denominator or error d.f.,
n — p — 1, where p is the number of parameters aside from the intercept. The
error d.f. is the denominator of the estimator for o2 that is used to unbias the
estimator, penalizing for having estimated p + 1 parameters by minimizing the
sum of squared errors used to estimate o2 itself. You can think of the error d.f.
as the sample size penalized for the number of parameters estimated, or as a
measure of the information base used to fit the model.
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S pesign Library for Multiple Linear
Regression

4.1

Hé

Formula Language and Fitting Function

+ Statistical formula in S:

y ~ x1 + x2 + x3

y is modeled as o + (yx1 + Boxs + [3x3.

* Formula is the first argument to a fitting function (just as it is the first argu-

ment to a trellis graphics function)

* Design library makes many aspects of regression modeling and graphical dis-

play of model results easier to do

* Design gets its name from the bookkeeping it does to remember details about

the design matrix for the model and to use these details in making automatic
hypothesis tests, estimates, and plots. The design matrix is the matrix of
independent variables after coding them numerically and adding nonlinear
and product terms if needed.

26
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* To use Design you need to first get access to the mmisc library. It is imperative
that access to the libraries is does as below, with the order indicated. You
can attach libraries with File ... Load Libraries but it is laborious and too
easy to forget to check the box Attach at Top of Search List. SO define a
.First function once and for all in your project area:

.First « function(...) {
library(Hmisc,T)

library(Design,T)
invisible()

}

.First Will be executed the next time you start S from that project directory.
If you don’t want to exit a current S session to make this happen, just type
First().

* Design library fitting function for ordinary least squares regression: ois

* Example:
f «— ols(y ~ age + sys.bp)

f is an S list object, containing coefficients, variances, and many other quan-
tities. £ is called the fit object. Below the fit object will be t throughout. In
practice, use any legal S name, e.g. fit.full.model.

4.2 Operating on the Fit Object

* Regression coefficient estimates may be obtained by any of the methods

listed below

f$coefficients

f$coef # abbreviation

coef (f) # use the coef extractor function
coef (f) [1] # get intercept

f$coef [2] # get 2nd coefficient (1st slope)

f$coef[’age’] # get coefficient of age
coef (f) [’age’] #ditto
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* But often we use methods which do something more interesting with the
model fit.

print (£) : print coefficients, standard errors, t-test, other statistics; can also
just type £ to print
fitted(£f) : compute g

predict(f, newdata) : get predicted values, for subjects described in data
frame newdata?

r «—resid(f) : compute the vector of n residuals (here, store it in r)
formula(f) : print the regression formula fitted
anova(f) : print ANOVA table for all total and partial effects

summary (f) : print estimates partial effects using meaningful changes in pre-
dictors

plot(f) : plot partial effects, with predictor ranging over the x-axis

g «Function(f) : create an S function that evaluates the analytic form of the
fitted function

nomogram(f) : draw a nomogram of the model

4.3 The Design datadist Function

To use plot, summary, Of nomogram in the Design Iibrary, you need to let Design first
compute summaries of the distributional characteristics of the predictors:

dd « datadist(x1,x2,x3,...) # generic form
dd < datadist(age, sys.bp, sex)
options(datadist=’dd’)

Note that the name 44 can be any name you choose as long as you use the same
name in quotes to options that you specify (unquoted) to the left of «—datadist(...).
It is best to invoke datadist early in your program before fitting any models.

2You can get confidence limits for predicted means or predicted individual responses using the conf.int and conf . type arguments to predict.
predict (£) without the newdata argument yields the same result as fitted(£).
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That way the datadist information is stored in the fit object so the model is self-
contained. That allows you to make plots in later sessions without worrying about

datadist.
datadist must be re-run if you add a new predictor or recode an old one. You can
update it using for example

dd < datadist(dd, cholesterol, height)
# Adds or replaces cholesterol, height summary stats in dd

With the usual S setup objects such as dd are stored in _Data and will be auto-
matically available in future S sessions. You will just need to re-issue options(datadist="dd’;
in future sessions.

4.4 Operating on Residuals

Residuals may be summarized and plotted just like any raw data variable.

* To see detailed residual plots use the p1ot.1m function builtin to S:

f «— ols(y ~ age + sys.bp)
plot.1lm(f)

If there are nas in the data, the last graph piot.1m tries to produce will bomb.
The others should be OK. p1ot.1m Will not plot against each predictor sepa-
rately®.

* To take control of the plots and to plot residuals vs. each predictor, use these
examples:

r < resid(f)
plot(fitted(f), r); abline(h=0) #yhatvs.r

plot(age, r); abline (h=0)
plot(sys.bp, r); abline (h=0)
bwplot(sex ~ r) # box plot stratified by sex

PAdd the argument smooths=T to plot.1m to get trend lines for the residuals. These lines should be flat if model assumptions hold.
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qgqnorm(r); qqline(r) # linearity indicates normality

4.5 Plotting Partial Effects

* plot(f) makes one plot for each predictor
* Predictor is on z-axis, y on the y-axis

* Predictors not shown in plot are set to constants

— median for continuous predictors

— mode for categorical ones
* For categorical predictor, estimates are shown only at data values

» 0.95 pointwise confidence limits for £(y|z) are shown (add cont . int=F to sup-
press CLs)

* Example:

par (mfrow=c(2,2))
plot(£f)

Makes 3 plots on one page if 3 predictors are in the model.

* To take control of which predictors are plotted, or to specify customized op-
tions:

plot(f, age=NA) # plot age effect, using default range,
# 10th smallest to 10th largest age
plot(f, age=20:70)# plot age=20,21,...,70
plot(f, age=seq(10,80,length=150))  # plot age=10-80, 150 points
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* To get confidence limits for ¢:

plot(f, age=NA, conf.type=’individual’)

* To show both types of 0.99 confidence limits on one plot:

# Draw the wider CLs first so all will fit on the plot

plot(f, age=NA, conf.int=0.99, conf.type=’individual’)
plot(f, age=NA, conf.int=0.99, conf.type=’mean’, add=T)
# add=T means to add to an existing plot

* Non-plotted variables are set to reference values (median and mode by de-
fault)

* To control the settings of non-plotted values use e.g.

plot(f, age=NA, sex=’female’)

* To make separate lines for the two sexes:

plot(f, age=NA, sex=NA) # add conf.int=F to suppress conf. bands

* To plot a 3-d surface for two continuous predictors against y:
plot(f, age=NA, cholesterol=NA)

4.6 Getting Predicted Values

* Using predict

predict(f, data.frame(age=30, sex=’male’))
# assumes that age and sex are the only variables in the model
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predict(f, data.frame(age=c(30,50), sex=c(’female’,’male’)))
# predictions for 30 y.o. female and 50 y.o. male

newdat «— expand.grid(age=c(30,50), sex=levels(sex))
predict(f, newdat) # 4 predictions

predict(f, newdat, conf.int=0.95) # also get CLs for mean
predict(f, newdat, conf.int=0.95, conf.type=’individual’) # CLs for indiv.

See also gendata and Dialog.

* The brute-force way

f «— ols(later.sys.bp ~ age + sex)

# Model is a + b1*age + b2*(sex=="femalge’) if

# levels(sex) = c('male’,female’) in that order

b « coef(f)

b[1] + b[2]*30 # prediction for 30 y.0. male, assuming
# the reference category is sex="male’

b[1] + b[2]*30 + b[3] # for 30 y.o. female

sexes «— c(’female’,’male’)
b[1] + b[2]*30 + b[3]*(sexes==’female’) # for both sexes, 30 y.o.

ages <« 10:20
b[1] + b[2]*ages # for 10-20 y.o. males

* Using Function function

g <« Function(f)

g(age=10:20, sex=’female’) # 21 predictions
g(age=17) # for 17 year old of most prevalent sex
4.7 ANOVA

* Use anova(fitobject) t0 get all total effects and individual partial effects
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* Use anova(f,age,sex) t0 get combined partial effects of age and sex, for exam-
ple

* Store result of anova in an object in you want to print it various ways, or to plot
it:

an <« anova(f)
print(an, ’names’) # print names of variables being tested
print(an, ’subscripts’)# print subscripts in coef(f) (ignoring

# the intercept) being tested
print(an, ’dots’) # a dot in each position being tested

* Example:

f «— ols(y ~ x1 + x2 + x3)
an « anova(f)
print(an, ’subscripts’)

Analysis of Variance Response: y
Factor d.f. Partial SS MS F P Tested
x1 1 0.008772 0.008772 0.01 0.9198 1
x2 1 0.017749 0.017749 0.02 0.8861 2
x3 1 23.002598 23.002598 26.76 <.0001 3
REGRESSION 3  23.361519 7.787173 9.06 <.0001 1-3
ERROR 95 81.668570  0.859669
Subscripts correspond to:
[1] x1 %2 x3
print(an, ’dots’)

Analysis of Variance Response: y
Factor d.f. Partial SS MS F P Tested
x1 1 0.008772  0.008772 0.01 0.9198 .
x2 1 0.017749  0.017749 0.02 0.8861
x3 1 23.002598 23.002598 26.76 <.0001
REGRESSION 3  23.361519 7.787173 9.06 <.0001

ERROR 95 81.668570  0.859669
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print(an, ’names’)

Analysis of Variance Response: y
Factor d.f. Partial SS MS F P Tested
x1 1 0.008772  0.008772 0.01 0.9198 x1
x2 1 0.017749 0.017749 0.02 0.8861 x2
x3 1 23.002598 23.002598 26.76 <.0001 x3
REGRESSION 3 23.361519 7.787173 9.06 <.0001 x1,x2,x3
ERROR 95 81.668570  0.859669

an < anova(f, x2, x3) # get combined x2,x3 effects
print(an, ’names’)

Analysis of Variance Response: y
Factor d.f. Partial SS MS F P Tested
x2 1 0.01775 0.01775 0.02 0.8861 x2
x3 1 23.00260 23.00260 26.76 <.0001 x3

REGRESSION 2  23.03582 11.51791 13.40 <.0001 x2,x3
ERROR 95  81.66857 0.85967
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Case Study: Lead Exposure and
Neuro-Psychological Function

5.1 Dummy Variable for Two-Level Categorical Predictors

* Categories of predictor: A, B (for example)
* First category = reference cell, gets a zero
* Second category gets a 1.0

* Formal definition of dummy variable: = = I|category = B]
Iw] = 1if wis true, 0 otherwise

* o+ fr = a+ Bl[category = B] =
« for category A subjects
a + ( for category B subjects
£ = mean difference (B — A)

35

Rosner 11.10
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5.2 Two-Sample ¢-test vs. Simple Linear Regression

* They are equivalent in every sense:

— P-value
— Estimates and C.L.s after rephrasing the model

— Assumptions (equal variance assumption of two groups in ¢-test is the
same as constant variance of y|x for every x)

’CL:YA
b=Yp—Y,

- se.(b) = se.(Yp— Yy)

5.3 Analysis of Covariance

* Multiple regression can extend the t-test

— More than 2 groups (multiple dummy variables can do multiple-group
ANQOVA)

— Allow for categorical or continuous adjustment variables (covariates, co-
variables)

* Model: MAXFWT = a+ (iage + Pasex + ¢

* Rosner coded sex = 1, 2 for male, female
Does not affect interpretation of 5, but makes interpretation of « more tricky
(mean MAXFWT when age = 0 and sex = 0 which is impossible by this
coding.
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* Better coding would have been sex = 0, 1 for male, female

— a=mean MAXFWT for a zero year-old male
— (1 = increase in mean M AXFWT per 1-year increase in age

— By = mean MAXFWT for females minus mean MAXFWT for males,
holding age constant

* Model: MAXFWT = o+ 51CSCN2 + Brage + [(3sex + e
CSCN2 =1 for exposed, 0 for unexposed

* /1 =mean MAXFWT for exposed minus mean for unexposed, holding age
and sex constant

* Pay attention to Rosner’s

— t and F’ statistics and what they test

— Figure 11.28 for checking for trend and equal variability of residuals (don’t
worry about standardizing residuals)
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The Correlation Coefficient

Rosner 11.7

Pearson product-moment linear correlation coefficient:
Lxy

Sa;y
Ly
L

T =

=0

Yy

* ris unitless

* r estimates the population correlation coefficient p (not to be confused with
Spearman p rank correlation coefficient)

c—1<r<i1

* r = —1 : perfect negative correlation

* r =1 : perfect positive correlation

38
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* r =0 : no correlation (no association)

* t — test for r is identical to ¢-test for b

* 12 is the proportion of variation in y explained by conditioning on z

o (n_z)i _Fl,n—2: MSR

1—r2 MSE

* For multiple regression in general we use R? to denote the fraction of varia-

tion in y explained jointly by all the 2’s (variation in y explained by the whole
model)

+ R? = 228 =1 — 558 = 1 minus fraction of unexplained variation

SST —

* R?is called the coefficient of determination

* R?is between 0 and 1

—O0whengy; =g foralli; SSE = SST

— 1 when g, = y; for all i; SSE=0

* R? = r? in the one-predictor case

6.1

Using » to Compute Sample Size

* Without knowledge of population variances, etc., » can be useful for planning

studies

* Choose n so that margin for error (half-width of C.L.) for r is acceptable
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* Precision of r in estimating p is generally worst when p = 0

* This margin for error is shown in the figure below

0.7
0.6
0.54

0.4-

Precision

0.3
0.2

0.1-

Figure 6.1: Margin for error (length of longer side of asymmetric 0.95 confidence interval) for r in
estimating p, when p = 0 (solid line) and p = 0.5 (dotted line). Calculations are based on Fisher’s
z transformation of r.

6.2 Comparing Two r’s

* Rarely appropriate

* Two r’s can be the same even though b’s may differ

* Usually better to compare effects on a real scale (b)
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Using Regression for ANOVA

Rosner 12.5.2

7.1 Dummy Variables

Lead Exposure Group.

control : normal in both 1972 and 1973
currently exposed : elevated serum lead level in 1973, normal in 1972

previously exposed : elevated lead in 1972, normal in 1973

* Requires two dummy variables (and 2 d.f.) to perfectly describe 3 categories
* x1 = I[currently exposed|
* 19 = I[previously exposed]

* Reference cell is control

41
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* Model:

E(ylexposure) = «+ (11 + Poxe
= «, controls
= «a + (3, currently exposed
= «a + [, previously exposed

a @ mean maxfwt for controls

01 : mean maxfwt for currently exposed minus mean for controls

02 : mean maxfwt for previously exposed minus mean for controls

B2 — (1 : mean for previously exposed minus mean for currently exposed
* In general requires k£ — 1 dummies to describe k categories
* For testing or prediction, choice of reference cell is irrelevant

* Does matter for interpreting individual coefficients

* Modern statistical programs automatically generate dummy variables from
categorical or character predictors?

* In S never generate dummy variables yourself; just tell the functions you are
using the name of the categorical predictor

7.2 Obtaining ANOVA with Multiple Regression

* Estimate «, 3; using standard least squares

* F'-test for overall regression is exactly F' for ANOVA

aln S dummies are generated automatically any time a factor or category variable is in the model. For SAS you must list such variables in a
CLAsS statement.
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* In ANOVA, SSR is call sum of squares between treatments

* SSFE is called sum of squares within treatments

* Don'’t need to learn formulas specifically for ANOVA

7.3 One-Way Analysis of Covariance

Rosner 12.5.3

* Just add other variables (covariates) to the model

* Example: predictors age and treatment
age is the covariate (adjustment variable)

* Global F test tests the global null hypothesis that neither age nor treatment
is associated with response

* To test the adjusted treatment effect, use the partial F' test for treatment
based on the partial SS for treatment adjusted for age

* If treatment has only two categories, the partial ¢-test is an easier way to get
the age-adjusted treatment test

* In S you can use

full < ols(y ~ age + treat)

anova(full) # actually gives you everything needed
reduced <« ols(y ~ age)

anova(reduced)

# Subtract SSR or SSE from these two models to get treat effect
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7.4 Two-Way ANOVA

Rosner 12.6

* Two categorical variables as predictors
* Each variable is expanded into dummy variables

* One of the predictor variables may not be time or episode within subject; two-
way ANOVA is often misused for analyzing repeated measurements within
subject

* Example: 3 diet groups (NOR, SV, LV) and 2 sex groups
© E(y|diet, sex) = a+ (11[SV] + Gl [LV] + Psl[male]
* Assumes effects of diet and sex are additive (separable) and not synergistic

* 1 = SV — NOR mean difference holding sex constant
03 = male — female effect holding diet constant

* Test of diet effect controlling for sex effect:
Hy:p1=0=0
Hy:pr#00r 3 #0

* This is a 2 d.f. partial F'-test, best obtained by taking difference in SS be-
tween this full model and a model that excludes all diet terms.

* Test for significant difference in mean y for males vs. females, controlling for
diet:
H() . 63 =0

* For a model that has m categorical predictors (only), none of which inter-
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act, with numbers of categories given by ki, ko, . ..

regression d.f. is >, (k; — 1)

7.5 Two-way ANOVA and Interaction

Example: sex (F,M) and treatment (A,B)
Reference cells: F, A Model:

E(y|sex,treatment) = o+ pil[sex = M|

45

, km, the total numerator

+ Beol[treatment = B] + (3l [sex = M N treatment = B

Note that /[sex = M Ntreatment = B] = I[sex = M| x [[treatment = B.

a : mean y for female on treatment A (all variables at reference values)

41 : mean y for males minus mean for females, both on treatment A = sex effect

holding treatment constant at A

(2 : mean for female subjects on treatment B minus mean for females on treat-
ment A = treatment effect holding sex constant at female

03 . B — A treatment difference for males minus B — A treatment difference for

females

Same as M — F difference for treatment B minus M — F difference for treat-

ment A

In this setting think of interaction as a “double difference”. To understand the

parameters:

Group E(y|Group)

FA e
MA o+ 3
FB a+ o

MB a+ B+ Bo+ B3

ThUSMB—MA—[FB—FA]:524-63—62:53.
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7.6 Interaction Between Categorical and Continuous Variables

This is how one allows the slope of a predictor to vary by categories of another
variable. Example: separate slope for males and females:

E(ylr) = a+ fiage + [a2l[sex = m]
+ [sage x I[sex = m)]
E(ylage, sex = f) = a+ fiage
o+ frage + (2 + Pzage
= (a+ B2) + (81 + B3)age

E(ylage, sex = m)

« : mean y for zero year-old female
01 : slope of age for females
(B2 : mean y for males minus mean y for females, for zero year-olds

03 @ increment in slope in going from females to males

7.7 Specifying Interactions in S

Asterisk in formula means “include all main effects and interactions involving
these variables.”

y ~ race + agextreatment

If race has levels B, W, O in that order and treatment has levels A, B in that order,
this specifies the model
Y = a+ Gilrace = W]+ Byl[race = O]

+ Bgage
+ [Bul[treatment = B]
+ Psage x I[treatment = B

The last term equals (Gsage if treatment = B, zero if treatment = A.
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If you run the Design library anova(fit object) command you will notice that mean-
ingless “main effects” are not tested by default. In the above model the tests that
are provided are

1. race main effect (2 d.f.)

2. combined age and age x treatment effect (2 d.f.); tests whether age is associated
with Y for either treatment (H, : 53 = (5 = 0)

3. combined treatment and treatment xXage effect (2 d.f.); tests whether treatment
is associated with Y for any age (Hy : 64 = 35 = 0)

4. age X treatment interaction (1 d.f., Hy: O = 0)
5. global test (5 d.f.)

Chapter and section numbers from this point on are humbered according
to REGRESSION MODELING STRATEGIES.



Chapter 2

General Aspects of Fitting Regression
Models

2.1 Notation for Multivariable Regression Models

* Weighted sum of a set of independent or predictor variables

* Interpret parameters and state assumptions by linearizing model with re-
spect to regression coefficients

* Analysis of variance setups, interaction effects, nonlinear effects

* Examining the 2 regression assumptions

48
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Y response (dependent) variable

X X1, Xo, ..., X, —list of predictors

16} Bo, 1, - - -, By — regression coefficients
B intercept parameter(optional)

B, ..., 0, weights or regression coefficients
Xﬁ ﬁo—f—ﬁle—f—...—f—ﬁpo,XO:l

Model: connection between X and Y
C(Y|X) : property of distribution of Y given X, e.g.
C(Y|X) =E(Y|X) or Prob{Y = 1|X}.

2.2 Model Formulations

General regression model
CY|X) = g(X).

General linear regression model
C(Y]X) = g(XP).
Examples
cylx)=  EY[X)=  Xp,
Y|X  ~N(XB,0?)
C(Y|X)= Prob{Y =1|X} = (1+exp(—Xp3))!

Linearize: h(C(Y|X)) = X3, h(u) = g (u)
Example:
C(Y|X)=Prob{Y =1|X} = (1+exp(—Xp3))"
h(u) = logit(u) = log(1 ﬁ u)
R(C(Y|X)) = C'(Y]X) (link)

General linear regression model:
C'(YX) = Xp.

49



CHAPTER 2. GENERAL ASPECTS OF FITTING REGRESSION MODELS 50

2.3 Interpreting Model Parameters

Suppose that X is linear and doesn't interact with other X’s.
C'Y|X) = XB=00+ X1 +...+5,X,

ﬁj — C/(Y|X17X27--~7Xj+17"'7Xp)
— C/(Y|X1,X2,..-,Xj,---,Xp>

Drop ' from C” and assume C(Y'|X) is property of Y that is linearly related to
weighted sum of X'’s.

2.3.1 Nominal Predictors

Nominal (polytomous) factor with & levels : £k — 1 dummy variables. E.g. T =
J K,L, M:

CYIT=1) = 6
CYIT = K) = Bo+
CYIT=1L) = fo+ b,

CY|T'=M) = B+ s
CY|T) = XB = fo+ 51 X1+ (2 Xo + B3X3,
where
X;=1 if T=K, 0 otherwise
Xo=1 if T=L, 0 otherwise
X3=1 if T'=M, 0 otherwise.
The test for any differences in the property C(Y') between treatments is Hy : 51 =

fo = B3 = 0.

2.3.2 Interactions

X and X, effect of X; on Y depends on level of X,. One way to describe
interaction is to add X3 = X;.X5 to model:

C(YX) = Bo+ i X1+ B2 X + B3X1 Xo.
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CY|IX1+1,Xy) — CY[X1,Xy)
= Oo+ G1( X1+ 1)+ B2 Xo
+ B3(X1+1)X,
(B0 + B1.X1 + B2 Xa + 33.X1.X5)]
= [+ B3Xo.
One-unit increase in X, on C(Y|X) : Gy + B3X;.
Worse interactions:

If X is binary, the interaction may take the form of a difference in shape (and/or
distribution) of X, vs. C(Y) depending on whether X; = 0 or X; = 1 (e.g.
logarithm vs. square root).

2.3.3 Example: Inference for a Simple Model

Postulated the model C(Y |age, sex) = By + frage + Ba(sex = f) + Psage(sex = f)
where sex = f is a dummy indicator variable for sex=female, i.e., the reference
cell is sex=male?.

Model assumes
1. age is linearly related to C'(Y") for males,

age is linearly related to C'(Y") for females, and

interaction between age and sex is simple

> W N

whatever distribution, variance, and independence assumptions are appro-
priate for the model being considered.

Interpretations of parameters:

2You can also think of the last part of the model as being 83 X3, where X3 = age x I[sex = f].
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Parameter Meaning

Bo C(Y|age =0, sex = m)

51 C(Y|age =z + 1,sex = m) — C(Y|age = x, sex = m)
Ba C(Y|age =0, sex = f) — C(Y|age = 0, sex = m)

O3 C(Y|age =z +1,sex = ) — C(Y|age = x,sex = f)—

[C(Yl|age =z + 1,sex =m) — C(Y|age = x, sex = m)]

(3 is the difference in slopes (female — male).

When a high-order effect such as an interaction effect is in the model, be sure
to interpret low-order effects by finding out what makes the interaction effect
ignorable. In our example, the interaction effect is zero when age=0 or sex is
male.

Hypotheses that are usually inappropriate:

1. Hy : £y = 0: This tests whether age is associated with Y for males

2. Hy: B, = 0: This tests whether sex is associated with Y for zero year olds
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More useful hypotheses follow. For any hypothesis need to

* Write what is being tested
* Translate to parameters tested
* List the alternative hypothesis

* Not forget what the test is powered to detect

— Test against nonzero slope has maximum power when linearity holds

— If true relationship is monotonic, test for non-flatness will have some but
not optimal power

— Test against a quadratic (parabolic) shape will have some power to detect
a logarithmic shape but not against a sine wave over many cycles

* Useful to write e.g. “H, : age is associated with C(Y"), powered to detect a
linear relationship”
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Most Useful Tests for Linear age x sex Model

Null or Alternative Hypothesis Mathematical
Statement
Effect of age is independent of sex or Hy:06;=0

Effect of sex is independent of age or
age and sex are additive

age effects are parallel

age interacts with sex H,:05#0
age modifies effect of sex

sex modifies effect of age

sex and age are non-additive (synergistic)
age is not associated with Y’ Hy:081=033=0
age is associated with Y/ H,:081#£00rp3#0
age is associated with Y for either
females or males

sex is not associated with Y Hy:0y=03=0

sex is associated with Y H,:Bs#00rp3#0
sex is associated with Y for some

value of age

Neither age nor sex is associated withY | Hy: 51 =32 =33 =0
Either age or sex is associated with Y H,:B31#00r By, #00r 33 £0

Note: The last test is called the global test of no association. If an interaction
effect present, there is both an age and a sex effect. There can also be age
or sex effects when the lines are parallel. The global test of association (test of
total association) has 3 d.f. instead of 2 (age+sex) because it allows for unequal
slopes.

2.4 Review of Composite (Chunk) Tests

* In the model

y ~ age + sex + weight + waist + tricep

we may want to jointly test the association between all body measurements
and response, holding age and sex constant.
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* This 3 d.f. test may be obtained two ways:

— Remove the 3 variables and compute the change in SSR or SSFE

— Test Hy : f3 = 84 = 05 = 0 using matrix algebra (e.g., anova(fit, weight,

waist, tricep))

2.5 Relaxing Linearity Assumption for Continuous Predictors

2.5.1 Simple Nonlinear Terms

C(Y|X1) = By + 51Xy + S X7

* Hy: model is linear in X; vs. H, : model is quadratic in X; = H; : 32 = 0.

* Test of linearity may be powerful if true model is not extremely non-parabolic
* Predictions not accurate in general as many phenomena are non-quadratic
* Can get more flexible fits by adding powers higher than 2

* But polynomials do not adequately fit logarithmic functions or “threshold”
effects, and have unwanted peaks and valleys.

2.5.2 Splines for Estimating Shape of Regression Function and Determining Predictor
Transformations

Draftman’s spline : flexible strip of metal or rubber used to trace curves.

Spline Function : piecewise polynomial
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Linear Spline Function : piecewise linear function
* Bilinear regression: model is Gy + 51 X if X < a, By + 35X if X > a.

* Problem with this notation: two lines not constrained to join

* To force simple continuity: By + 51X + G2(X —a) X I X > a] = Bo+ 51 X1 +
BQXQ, where X9 = (X1 — CL) X I[Xl > CL].

* Slope is 31, X < a, 81 + 32, X > a.

* 35 is the slope increment as you pass a

More generally: X-axis divided into intervals with endpoints a, b, ¢ (knots).

f(X) = Bo+ 51X+ Bo(X —a)y + G3(X —b)+
+ 64(X - C)—H

where

(u)y = u, u>0,

0, v<0.
f(X) = 0y + (1 X, X<a
= B0+ 51X + Bo(X —a) a< X <b

:ﬂo+61X+ﬂQ(X—CL>+63(X—b) b< X <c
= o + X + Bo(X — a)
—C>

+03(X —b) + Bu(X c< X.

CY|X) = f(X) = Xp,
where X3 = By + 51.X1 + B2Xo + (3X3 + 54Xy, and
Xi=X Xo=(X—a),
Xs=(X-b, X4=(X—-0)..
Overall linearity in X can be tested by testing Hy : 6, = 83 = 64 = 0.
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Figure 2.1: A linear spline function with knots at a=1, b=3, c=5
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2.5.3 Cubic Spline Functions

Cubic splines are smooth at knots (function, first and second derivatives agree)
— can't see joins.

f(X)

Bo+ B X + BoX? + 33X°
+ Bu(X —a)? 4 B5(X —b)3 + Bs(X — )%
X[

X=X X, = X?
X=X X;=(X—a)?
X5:(X—b>+ XGZ(X—C>3_.

k knots — k + 3 coefficients excluding intercept.

X? and X3 terms must be included to allow nonlinearity when X < a.

2.5.4 Restricted Cubic Splines

Stone and Koo : cubic splines poorly behaved in tails. Constrain function to be
linear in tails.
k+ 3 — k — 1 parameters .

To force linearity when X < a: X? and X3 terms must be omitted
To force linearity when X > last knot: last two gs are redundant, i.e., are just
combinations of the other gs.

The restricted spline function with k£ knots ¢4, ..., ¢ is given by
f(X) = ﬁo + 51 X1+ o Xo+ .+ 1 X,
where X; = X andforj=1,...,k— 2,

Xjm = (X —t)3 — (X = te1)3 (b — 1)/ (t — ten)
X = ) (bt — £5)) (t — ).

X, is linear in X for X > t;.
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Figure 2.2: Restricted cubic spline component variables for k=5 and knots at X =
.05,.275,.5,.725, and .95. Left panel is a magnification of the right. Fitted func-
tions such as those in Figure 2.3 will be linear combinations of these basis func-
tions as long as knots are at the same locations used here.
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Figure 2.3: Some typical restricted cubic spline functions for k = 3,4,5,6. The y-axis
is X 3. Arrows indicate knots. These curves were derived by randomly choosing
values of 3 subject to standard deviations of fitted functions being normalized.

See th76 Web site for a script to create more random spline functions, for k =
3,...,7.
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Once f, ..., Br_1 are estimated, the restricted cubic spline can be restated in
the form

FX) = Bot BiX 4 Go(X —t1)2 4 Ba(X —ta)2
+oot Be (X — )3

by computing

Br = [Bo(ti —ty) + Bs(ta —tr) + ...
+Br—1(tr—2 — tr)]/(tr — tp—1)
Br+1 = [Ba(ts — tp—1) + Bs(ta — tp—1) + ...
+Br—1(th—2 — tr—1)]/(tpe—1 — tr)-

A test of linearity in X can be obtained by testing

Hy:0Bo=03=...= 1 =0.

2.5.5 Choosing Number and Position of Knots
* Knots are specified in advance in regression splines
* Locations not important in most situations

* Place knots where data exist — fixed quantiles of predictor's marginal distri-
bution

* Fit depends more on choice of k



CHAPTER 2. GENERAL ASPECTS OF FITTING REGRESSION MODELS 62

Quantiles
10 S .90
.05 35 .65 .95
.05 275 5 725 .95
.05 .23 41 59 77 .95
.025 .1833 .3417 .5 .6583 .8167 .975

NOoO Ok~ WX

n < 100 — replace outer quantiles with 5th smallest and 5th largest X .

Choice of k&:

* Flexibility of fit vs. n and variance

* Usually k£ = 3,4,5. Often k =4

* Largen (e.g. n > 100)— k=5

* Small n (< 30,say)—k =3

* Can use Akaike’s information criterion (AIC) to choose k

* This chooses & to maximize model likelihood ratio x? — 2k.

2.5.6 Nonparametric Regression

* Estimate tendency (mean or median) of Y as a function of X

* Few assumptions

* Especially handy when there is a single X
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* Plotted trend line may be the final result of the analysis

* Simplest smoother: moving average

X: 1 2 3 5 8
Y: 21 3.8 57 111 172

5 2.1+38+5.7
By|x =2) = =7 - il
A 2 5 3.8+57+11.1
BEY|X = ;?F) — + ; +

— overlap OK
— problem in estimating £(Y") at outer X-values

— estimates very sensitive to bin width
* Moving linear regression far superior to moving avg. (moving flat line)

* Cleveland’s moving linear regression smoother loess (locally weighted least
squares) is the most popular smoother. To estimate central tendency of Y at
X =

— take all the data having X values within a suitable interval about x (default
is 2 of the data)
— fit weighted least squares linear regression within this neighborhood

— points near z given the most weight®

— points near extremes of interval receive almost no weight

bWeight here means something different than regression coefficient. It means how much a point is emphasized in developing the regression
coefficients.
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— loess works much better at extremes of X than moving avg.

— provides an estimate at each observed X; other estimates obtained by
linear interpolation

— outlier rejection algorithm built-in
* loess works great for binary Y — just turn off outlier detection
* Other popular smoother: Friedman’s “super smoother”
* For loess or supsmu amount of smoothing can be controlled by analyst

* Another alternative: smoothing splines®

* Smoothers are very useful for estimating trends in residual plots

2.5.7 Advantages of Regression Splines over Other Methods

Regression splines have several advantages :

* Parametric splines can be fitted using any existing regression program

* Regression coefficients estimated using standard techniques (ML or least
squares), formal tests of no overall association, linearity, and additivity, con-
fidence limits for the estimated regression function are derived by standard

theory.

* The fitted function directly estimates transformation predictor should receive
to yield linearity in C(Y|X).

CThese place knots at all the observed data points but penalize coefficient estimates towards smoothness.
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* Even when a simple transformation is obvious, spline function can be used

to represent the predictor in the final model (and the d.f. will be correct).
Nonparametric methods do not yield a prediction equation.

* Extension to non-additive models.
Multi-dimensional nonparametric estimators often require burdensome com-
putations.

2.6 Recursive Partitioning: Tree-Based Models

Breiman, Friedman, Olshen, and Stone : CART (Classification and Regression
Trees) — essentially model-free

Method:

* Find predictor so that best possible binary split has maximum value of some
statistic for comparing 2 groups

* Within previously formed subsets, find best predictor and split maximizing
criterion in the subset

* Proceed in like fashion until < & obs. remain to split

* Summarize Y for the terminal node (e.g., mean, modal category)

* Prune tree backward until it cross-validates as well as its “apparent” accu-
racy, or use shrinkage
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Advantages/disadvantages of recursive partitioning:

* Does not require functional form for predictors

* Does not assume additivity — can identify complex interactions
* Can deal with missing data flexibly

* Interactions detected are frequently spurious

* Does not use continuous predictors effectively

* Penalty for overfitting in 3 directions

* Often tree doesn’t cross-validate optimally unless pruned back very conser-
vatively

* Very useful in messy situations or those in which overfitting is not as prob-
lematic (confounder adjustment using propensity scores ; missing value im-
putation)

2.7 Multiple Degree of Freedom Tests of Association

C(Y|X) = By + b X1+ 5o Xs + B5X7,
Hy : 6o = p3 = 0 with 2 d.f. to assess association between X, and outcome.
In the 5-knot restricted cubic spline model
CY|X) = 0o+ i X + Bo X'+ B3 X" 4 0, X",
Hy:B1=...=084,=0
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* Test of association: 4 d.f.
* Insignificant — dangerous to interpret plot

* What to do if 4 d.f. test insignificant, 3 d.f. test for linearity insig., 1 d.f. test
sig. after delete nonlinear terms?

Grambsch and O’Brien elegantly described the hazards of pretesting

* Studied quadratic regression

* Showed 2 d.f. test of association is nearly optimal even when regression is
linear if nonlinearity entertained

* Considered ordinary regression model
EY|X) = o+ 5 X + S X?

* Two ways to test association between X and Y
* Fit quadratic model and test for linearity (Hy : B2 = 0)

* F-test for linearity significant at « = 0.05 level — report as the final test of
associationthe 2 d.f. Ftestof Hy: 51 = 32 =0

* If the test of linearity insignificant, refit without the quadratic term and final
test of association is 1 d.f. test, Hy: 51 = 0|32 =0

* Showed that type | error > «

* Fairly accurate P-value obtained by instead testing against F' with 2 d.f. even
at second stage
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* Cause: are retaining the most significant part of F’

* BUT if test against 2 d.f. can only lose power when compared with original
F for testing both gs

* SSR from quadratic model > SSR from linear model
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2.8 Assessment of Model Fit

2.8.1 Regression Assumptions

The general linear regression model is
CY|X)=X3= 0+ 5X1+ BoXo+ ...+ 51X}
Verify linearity and additivity. Special case:
C(Y|X) = By + 51.X1 + 32X,
where X, is binary and X, is continuous. Methods for checking fit:

C(Y) 1

X

2

Figure 2.4: Regression assumptions for one binary and one continuous predictor

1. Fit simple linear additive model and check examine residual plots for pat-
terns

- For OLS: box plots of e stratified by X, scatterplots of e vs. X, and Y,
with trend curves (want flat central tendency, constant variability)

* For normality, qgqnorm plots of overall and stratified residuals
Advantage: Simplicity
Disadvantages:



CHAPTER 2. GENERAL ASPECTS OF FITTING REGRESSION MODELS 70

* Can only compute standard residuals for uncensored continuous response
* Subjective judgment of non-randomness

* Hard to handle interaction

* Hard to see patterns with large n (trend lines help)

* Seeing patterns does not lead to corrective action

2. Scatterplot of Y vs. X, using different symbols according to values of X,
Advantages: Simplicity, can see interaction

Disadvantages:

* Scatterplots cannot be drawn for binary, categorical, or censored Y

* Patterns difficult to see if relationships are weak or n large

3. Stratify the sample by X; and quantile groups (e.g. deciles) of X5; estimate
C(Y| X1, Xy) for each stratum
Advantages: Simplicity, can see interactions, handles censored Y (if you
are careful)

Disadvantages:

* Requires large n
* Does not use continuous var. effectively (no interpolation)
* Subgroup estimates have low precision

* Dependent on binning method

4. Separately for levels of X, fit a nonparametric smoother relating X, to Y
Advantages: All regression aspects of the model can be summarized effi-
ciently with minimal assumptions

Disadvantages:
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* Does not apply to censored Y

* Hard to deal with multiple predictors

5. Fit flexible nonlinear parametric model
Advantages:

* One framework for examining the model assumptions, fitting the model,
drawing formal inference

* d.f. defined and all aspects of statistical inference “work as advertised”
Disadvantages:

* Complexity

* Generally difficult to allow for interactions when assessing patterns of
effects

Confidence limits, formal inference can be problematic for methods 1-4.

Restricted cubic spline works well for method 5.
CY|X) = Bo+ Xt + BoXo+ B X5 + Bu XY
= fo+ /i Xi + f(Xy),

where A A A )
f(Xa) = 02X + 55X5 + 04 X7,
f(X>) spline-estimated transformation of X».

* Plot f(XQ) vSs. X
* n large — can fit separate functions by X;
* Test of linearity: Hy: B3 =03, =0

* Nonlinear — use transformation suggested by spline fit or keep spline terms
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* Tentative transformation ¢g(X,) — check adequacy by expanding ¢(X5) in
spline function and testing linearity

* Can find transformations by plotting g(X5) vs. f(Xz) for variety of ¢
* Multiple continuous predictors — expand each using spline

* Example: assess linearity of X5, X3

CY|X) = Bo+ i Xq+ BoXo + 03 X5 + B Xy
+ B5X3+ B6 X3+ 07.X3,
Overall test of linearity Hy : 53 = 5, = s = 7 = 0, with 4 d.f.

2.8.2 Modeling and Testing Complex Interactions

X1 binary or linear, X, continuous:

CY|X) = Bo+ 5iX1+ (oXo + 53X+ 54 X5
+5: X1 X0 + B X1 X5 + 57 X1 X))

Simultaneous test of linearity and additivity: Hy: 5= ... = 8; = 0.

* 2 continuous variables: could transform separately and form simple product
* Transformations depend on whether interaction terms adjusted for

* Fit interactions of the form X f(X5) and Xog(X1):

C(Y|X) Bo + 51 X1+ (o X1 + B5X7{

+ BaXo+ G5 X5 + G Xy

+ X1 Xs + s X1 X5 + Bo X1 Xy
+

BroXo X + S Xo XY
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* Test of additivity is Hy : 37 = Bs = ... = 11 = 0 with 5 d.f.
* Test of lack of fit for the simple product interaction with X5 is Hy : G5 = By = 0

* Test of lack of fit for the simple product interaction with X is Hy : 519 = f11 =
0

General spline surface:

* Cover X; x X, plane with grid and fit patch-wise cubic polynomial in two
variables

* Restrict to be of form a X + bX5 + ¢X; X5 in corners
* Uses all (k — 1)? cross-products of restricted cubic spline terms

* See Gray for penalized splines allowing control of effective degrees of free-
dom

Other issues:

* Y non-censored (especially continuous) — multi-dimensional scatterplot smoother
* Interactions of order > 2: more trouble
* 2-way interactions among p predictors: pooled tests

* p tests each with p — 1 d.f.

Some types of interactions to pre-specify in clinical studies:
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* Treatment x severity of disease being treated

* Age x risk factors

* Age x type of disease

* Measurement x state of a subject during measurement

* Race x disease

* Calendar time x treatment

* Quality x quantity of a symptom
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Missing Data

3.1 Types of Missing Data

* Missing completely at random (MCAR)
* Missing at random (MAR)

* Informative missing
(non-ignorable non-response)

3.2 Prelude to Modeling

* Quantify extent of missing data
* Characterize types of subjects with missing data

* Find sets of variables missing on same subjects
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3.3 Missing Values for Different Types of Response Variables

* Serial data with subjects dropping out (not covered in this course)

* Y=time to event, follow-up curtailed: covered under survival analysis

* Often discard observations with completely missing Y but sometimes waste-
ful

* Characterize missings in Y before dropping obs.

3.4 Problems With Simple Alternatives to Imputation

Deletion of records—

* Badly biases parameter estimates when missingness is related to Y in a way
that is unexplained by non-missing X's

* Deletion because of a subset of X being missing always results in inefficient
estimates

* Deletion of records with missing Y may result in serious biases
* Only discard obs. when

— Rarely missing predictor of overriding importance that can’t be imputed
from other data

— Fraction of obs. with missings small and n is large

* No advantage of deletion except savings of analyst time
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* Making up missing data better than throwing away real data
Adding extra categories of categorical predictors—

* Including missing data but adding a category ‘missing’ causes serious biases
* Problem acute when values missing because subject too sick

* Difficult to interpret

3.5 Strategies for Developing Imputation Algorithms
Exactly how are missing values estimated?
* Could ignore all other information — random or grand mean fill-in
* Can use external info not used in response model (e.g., zip code for income)
* Need to utilize reason for non-response if possible
* Use statistical model with sometimes-missing X as response variable
» Ignoring imputation results in biased V' (3)

* transcan function in Hmisc library: “optimal” transformations of all variables
to make residuals more stable and to allow non-monotonic transformations

* aregImpute function in Hmisc: good approximation to full Bayesian multiple
imputation procedure using the bootstrap
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* aregImpute aANd transcan WOrk with fit.mult.impute t0 make final analysis of
response variable relatively easy

* Predictive mean matching : replace missing value with observed value of
subject having closest predicted value to the predicted value of the subject
with the NA

— PMM can result in some donor observations being used repeatedly
— Causes lumpy distribution of imputed values

— Address by sampling from multinomial distribution, probabilities = scaled
distance of all predicted values to predicted value (y*) of observation
needing imputing

— Tukey’s tricube function is a good weighting function (used in loess):
w; = (1 — min(d;/s, 1)%)3,
d; = \?Jz — y*\
s = 0.2 x mean|y; — y*| is a good default scale factor
scale sothat > w; =1

* Recursive partitioning with surrogate splits — handles case where a predic-
tor of a variable needing imputation is missing itself

3.6 Single Conditional Mean Imputation

* Can fill-in using unconditional mean or median if number of missings low and
X is unrelated to other Xs

* Otherwise, first approximation to good imputation uses other X's to predict a
missing X

* This is a single “best guess” conditional mean
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* X;=20,Z = X;
Cannot include Y in Z without adding random errors to imputed values
(would steal info from Y)

* Recursive partitioning is very helpful for nonparametrically estimating condi-
tional means

3.7 Multiple Imputation

* Single imputation using a random draw from the conditional distribution for
an individual
X;=20+¢7=[X],Y]
¢ = n(0,0) or a random draw from the calculated residuals

— bootstrap

— approximate Bayesian bootstrap : sample with replacement from sample
with replacement of residuals

* Multiple imputations (1) with random draws

— Draw sample of M residuals for each missing value to be imputed
— Average M §3

— In general can provide least biased estimates of

A

— Simple formula for imputation-corrected var(5)
Function of average “apparent” variances and between-imputation vari-
ances of

— BUT full multiple imputation needs to account for uncertainty in the im-
putation models by refitting these models for each of the M draws



CHAPTER 3. MISSING DATA 80

— transcan does not do that; aregImpute does

* areglmpute algorithm

— Takes all aspects of uncertainty into account using the bootstrap

— Different bootstrap resamples used for each imputation by fitting a flexible
additive model on a sample with replacement from the original data

— This model is used to predict all of the original missing and non-missing
values for the target variable for the current imputation

— Uses ace 0or avas semiparametric regression models to impute

— For continuous variables, monotonic transformations of the target vari-
able are assumed when avas used

— For ace, the default allows nonmonotonic transformations of target vari-
ables

— Uses predictive mean matching for imputation; no residuals required

— By default uses weighted PMM; option for just using closest match

— When a predictor of the target variable is missing, it is first imputed from
its last imputation when it was a target variable

— First 3 iterations of process are ignored (“burn-in”)

— Compares favorably to S mice approach

— Example:
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a « aregImpute(~ monotone(age) + sex + bp + death,
data=mydata, n.impute=5)
f < fit.mult.impute(death ~ rcs(age,3) + sex +
rcs(bp,5), lrm, a, data=mydata)

3.8 Summary and Rough Guidelines

Table 3.1: Summary of Methods for Dealing with Missing Values

Method Deletion  Single Multiple
Allows non-random missing X X
Reduces sample size X
Apparent S.E. of /3 too low X
Increases real S.E. of /3 X
3 biased if not MCAR  x

The following contains very crude guidelines. Simulation studies are needed
to refine the recommendations. Here “proportion” refers to the proportion of
observations having any variables missing.

Proportion of missings < 0.05 : Method of imputing and computing variances
doesn’t matter much

Proportion of missings 0.05 — 0.15 : Constant fill-in if predictor unrelated to
other Xs.

Single “best guess” imputation probably OK. Multiple imputation doesn’t hurt.

Proportion of missings > 0.15 : Multiple imputation, adjust variances for impu-
tation

Multiple predictors frequently missing More important to do multiple imputa-
tion and also to be cautious that imputation might be ineffective.

Reason for missings more important than number of missing values.
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Multivariable Modeling Strategies

* “Spending d.f.”: examining or fitting parameters in models, or examining ta-
bles or graphs that utilize Y to tell you how to model variables

* If wish to preserve statistical properties, can’t retrieve d.f. once they are
“spent” (see Grambsch & O’Brien)

* If a scatterplot suggests linearity and you fit a linear model, how many d.f.
did you actually spend (i.e., the d.f. that when put into a formula results in
accurate confidence limits or P-values)?

* Decide number of d.f. that can be spent
* Decide where to spend them

* Spend them
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4.1 Prespecification of Predictor Complexity Without Later Simplification

* Rarely expect linearity
* Can’t always use graphs or other devices to choose transformation
* If select from among many transformations, results biased

* Need to allow flexible nonlinearity to potentially strong predictors not known
to predict linearly

* Once decide a predictor is “in” can choose no. of parameters to devote to it
using a general association index with Y’

* Need a measure of “potential predictive punch” (ignoring collinearity and
interaction for now)

* Measure needs to mask analyst to true form of regression to preserve sta-
tistical properties

- 2 d.f. generalization of Spearman p—R? based on rank(X) and rank(X)?
vs. rank(Y)

* p? can detect U-shaped relationships

* For categorical X, p? is R? from dummy variables regressed against rank(Y);
this is tightly related to the Wilcoxon—-Mann—Whitney—Kruskal-Wallis rank
test for group differences?

* Sort variables by descending order of p?

aThis test statistic does not inform the analyst of which groups are different from one another.
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* Specify number of knots for continuous X, combine infrequent categories of
categorical X based on p?

- Allocating d.f. based on sorting p? fair procedure because

— already decided to keep variable in model no matter what p?

— p? does not reveal degree of nonlinearity; high value may be due solely
to strong linear effect

— low p? for a categorical variable might lead to collapsing the most dis-
parate categories

* Initial simulations show the procedure to be conservative

* Can move from simpler to more complex models but not the other way round

4.2 Checking Assumptions of Multiple Predictors Simultaneously

* Sometimes failure to adjust for other variables gives wrong transformation of
an X, or wrong significance of interactions

* Sometimes unwieldy to deal simultaneously with all predictors at each stage
— assess regression assumptions separately for each predictor

4.3 Variable Selection

* Series of potential predictors with no prior knowledge

* T exploration — 7 shrinkage (overfitting)
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- Summary of problem: E(3|3 “significant” ) # 3
* I and ? statistics do not have the claimed distribution

* Derksen and Keselman found that in stepwise analyses the final model
represented noise 0.20-0.74 of time, final model usually contained < ; actual
number of authentic predictors. Also:

1. “The degree of correlation between the predictor variables affected
the frequency with which authentic predictor variables found their
way into the final model.

2. The number of candidate predictor variables affected the number
of noise variables that gained entry to the model.

3. The size of the sample was of little practical importance in de-
termining the number of authentic variables contained in the final
model.

4. The population multiple coefficient of determination could be faith-
fully estimated by adopting a statistic that is adjusted by the total
number of candidate predictor variables rather than the number of
variables in the final model”.

* Global test with p d.f. insignificant — stop
Variable selection methods :

* Forward selection, backward elimination

* Stopping rule: “residual y*” with d.f. = no. candidates remaining at current
step

- Test for significance or use Akaike’s information criterion (AIC ), here x? —
2xd.f.

* Better to use subject matter knowledge!
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* No currently available stopping rule was developed for stepwise, only for
comparing 2 pre-specified models

* Roecker studied forward selection (FS), all possible subsets selection (APS),
full fits

* APS more likely to select smaller, less accurate models than FS

* Neither as accurate as full model fit unless > 3 candidate variables redun-
dant or unnecessary

*+ Step-down is usually better than forward and can be used efficiently with
maximum likelihood estimation

* Bootstrap can help decide between full and reduced model

* Full model fits gives meaningful confidence intervals with standard formulas,
C.l. after stepwise does not

* Data reduction (grouping variables) can help

* Using the bootstrap to select important variables for inclusion in the final
model is problematic

* Itis not logical that a population regression coefficient would be exactly zero
just because its estimate was “insignificant”

4.4 Overfitting and Limits on Number of Predictors

* Concerned with avoiding overfitting
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* p should be < %

* p = number of parameters in full model or number of candidate parameters
in a stepwise analysis

Table 4.1: Limiting Sample Sizes for Various Response Variables

Type of Response Variable Limiting Sample Size m

Continuous n (total sample size)
Binary min(ny, ny) °
Ordinal (k categories) n— 58 nd
Failure (survival) time number of failures °

* Narrowly distributed predictor — even higher n

* p includes all variables screened for association with response, including
interactions

* Univariable screening (graphs, crosstabs, etc.) in no way reduces multiple
comparison problems of model building

4.5 Shrinkage

* Slope of calibration plot; regression to the mean

* Statistical estimation procedure — “pre-shrunk” models

a|f one considers the power of a two-sample binomial test compared with a Wilcoxon test if the response could be made continuous and the
proportional odds assumption holds, the effective sample size for a binary response is 3ni1n2/n ~ 3min(n1, n2) if % isnear0or 1. Here n;
and no are the marginal frequencies of the two response levels .

PBased on the power of a proportional odds model two-sample test when the marginal cell sizes for the response are n1, . .., ny, compared
with all cell sizes equal to unity (response is continuous) . If all cell sizes are equal, the relative efficiency of having k response categories
compared to a continuous response is 1 — 1%2 , €.9., a 5-level response is almost as efficient as a continuous one if proportional odds holds
across category cutoffs.

CThis is approximate, as the effective sample size may sometimes be boosted somewhat by censored observations, especially for non-
proportional hazards methods such as Wilcoxon-type tests .
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* Aren’t regression coefficients OK because they’re unbiased?

* Problem is in how we use coefficient estimates

* Consider 20 samples of size n = 50 from U(0, 1)

* Compute group means and plot in ascending order

* Equivalent to fitting an intercept and 19 dummies using least squares

- Result generalizes to general problems in plotting Y vs. X3

™~
o

0.6

0.5

Group Mean

//

0.4

10181520 1 8 7 161913 9 17 6 14 3 11 4 5 2 12

Group

Figure 4.1: Sorted means from 20 samples of size 50 from a uniform [0, 1] distri-

%uetg)lgs. The reference line at 0.5 depicts the true population value of all of the
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* Prevent shrinkage by using pre-shrinkage

* Spiegelhalter : var. selection arbitrary, better prediction usually results from
fitting all candidate variables and using shrinkage

* Shrinkage closer to that expected from full model fit than based on number
of significant variables

* Ridge regression
* Penalized MLE

* Heuristic shrinkage parameter of van Houwelingen and le Cessie
model x? — p

7= Tnodel X2

* OLS: 4 = “LR2,./R?

* p close to no. candidate variables

* Copas adds 2 to numerator

4.6 Collinearity

* When at least 1 predictor can be predicted well from others
* Can be a blessing (data reduction, transformations)

- 1 s.e. of 3, | power
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* This is appropriate — asking too much of the data
* Variables compete in variable selection, chosen one arbitrary

* Does not affect joint influence of a set of highly correlated variables (use
multiple d.f. tests)

* Does not at all affect predictions on model construction sample

* Does not affect predictions on new data if

1. Extreme extrapolation not attempted
2. New data have same type of collinearities as original data

* Example: LDL and total cholesterol — problem only if more inconsistent in
new data

- Example: age and age? — no problem
* One way to quantify for each predictor: variance inflation factors (VIF)

* General approach (maximum likelihood) — transform information matrix to
correlation form, VIF=diagonal of inverse

* See Belsley for problems with VIF

* Easy approach: SAS varcLus procedure , S-PLUS varcius function, other clus-
tering techniques: group highly correlated variables

* Can score each group (e.g., first principal component, PC; ); summary
scores not collinear
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4.7 Data Reduction

* Unless n >> p, model unlikely to validate

* Data reduction: | p

* Use the literature to eliminate unimportant variables.

* Eliminate variables whose distributions are too narrow.

* Eliminate candidate predictors that are missing in a large number of sub-
jects, especially if those same predictors are likely to be missing for future
applications of the model.

* Use a statistical data reduction method such as incomplete principal compo-
nents regression, nonlinear generalizations of principal components such as
principal surfaces, sliced inverse regression, variable clustering, or ordinary
cluster analysis on a measure of similarity between variables.

4.7.1 Variable Clustering

* Goal: Separate variables into groups

— variables within group correlated with each other

— variables not correlated with non-group members

* Score each dimension, stop trying to separate effects of factors measuring
same phenomenon

* Variable clustering (oblique-rotation PC analysis) — separate variables so
that first PC is representative of group
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* Can also do hierarchical cluster analysis on similarity matrix based on squared
Spearman or Pearson correlations, or more generally, Hoeffding’s D .

4.7.2 Transformation and Scaling Variables Without Using Y

* Reduce p by estimating transformations using associations with other pre-
dictors

* Purely categorical predictors — correspondence analysis

* Mixture of qualitative and continuous variables: qualitative principal compo-
nents

* Maximum generalized variance (MGV) method of Sarle

1. Predict each variable from (current transformations of) all other variables

2. For each variable, expand it into linear and nonlinear terms or dummies,
compute first canonical variate

3. For example, if there are only two variables X; and X, represented as
quadratic polynomials, solve for a,b, ¢, d such that aX; + bX? has maxi-
mum correlation with ¢ X5 + dX3.

4. Goal is to transform each var. so that it is most similar to predictions from
other transformed variables

5. Does not rely on PCs or variable clustering

4.7.3 Simultaneous Transformation and Imputation

S-PLUS transcan Function for Data Reduction & Imputation

* Initialize missings to medians (or most frequent category)

* Initialize transformations to original variables
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* Take each variable in turn as Y’

* Exclude obs. missing on Y

* Expand Y (spline or dummy variables)

* Score (transform Y') using first canonical variate
* Missing Y — predict canonical variate from Xs

* The imputed values can optionally be shrunk to avoid overfitting for small n
or large p

* Constrain imputed values to be in range of non-imputed ones

* Imputations on original scale

1. Continuous — back-solve with linear interpolation

2. Categorical — classification tree (most freq. cat.) or match to category
whose canonical score is closest to one predicted

* Multiple imputation — bootstrap or approx. Bayesian boot.

1. Sample residuals multiple times (default M = 5)
2. Are on “optimally” transformed scale
3. Back-transform

4. fit.mult.impute WOrkS with aregImpute and transcan output to easily get
imputation-corrected variances and avg. 3

* Example: n = 415 acutely ill patients

1. Relate heart rate to mean arterial blood pressure
2. Two blood pressures missing
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3. Heart rate not monotonically related to blood pressure
4. See Figure 4.2

* These methods find marginal transformations

4.7.4 Simple Scoring of Variable Clusters

* Try to score groups of transformed variables with PC
* Reduces d.f. by pre-transforming var. and by combining multiple var.

* Later may want to break group apart, but delete all variables in groups whose
summary scores do not add significant information

* Sometimes simplify cluster score by finding a subset of its constituent vari-
ables which predict it with high R2.

Series of dichotomous variables:

* Construct X; = 0-1 according to whether any variables positive
* Construct X, = number of positives

* Test whether original variables add to X; or X5
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Figure 4.2: Transformations fitted using transcan. Tick marks indicate the two imputed
values for blood pressure. The lower left plot contains raw data (D,, = 0.02), the
lower right is a scatterplot of the corresponding transformed values (D, = 0.14).
Data courtesy of the SUPPORT study .
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4.7.5 Simplifying Cluster Scores

4.7.6 How Much Data Reduction Is Necessary?

Summary of Some Data Reduction Methods

Goals

Reasons

Methods

Group predictors so
that each group rep-
resents a single di-
mension that can be
summarized with a
single score

e | d.f. arising from
multiple predictors

e Make PC; more
reasonable  sum-
mary

Transform predictors

e | d.f. due to non-
linear and dummy
variable  compo-
nents

¢ Allows predictors to
be optimally com-
bined

e Make PC; more
reasonable  sum-
mary

e Use in customized
model for imputing
missing values on
each predictor

Score a group of pre-
dictors

| d.f. for group to unity

[Multile dimensionall —————

e . ]

Variable clustering

e Subject matter

knowledge

e Group predictors
to maximize pro-
portion of variance
explained by PC,
of each group

e Hierarchical clus-
tering using a
matrix of similarity
measures between
predictors

o Maximum total vari-
ance on a group of
related predictors

e Canonical variates
on the total set of
predictors

o PC,

e Simple
sScores

point

Principal components
1 Oy 7 71 e

o PR
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4.8 Overly Influential Observations

* Every observation should influence fit
* Major results should not rest on 1 or 2 obs.
* Overly infl. obs. — 1 variance of predictions

* Also affects variable selection

Reasons for influence:

* Too few observations for complexity of model (see Sections 4.7, 4.3)
* Data transcription or entry errors

* Extreme values of a predictor

1. Sometimes subject so atypical should remove from dataset
2. Sometimes truncate measurements where data density ends

3. Example: n = 4000, 2000 deaths, white blood count range 500-100,000,
.05,.95 quantiles=2755, 26700

4. Linear spline function fit
5. Sensitive to WBC> 60000 (n = 16)
6. Predictions stable if truncate WBC to 40000 (n = 46 above 40000)

* Disagreements between predictors and response. Ignore unless extreme
values or another explanation

* Example: n = 8000, one extreme predictor value not on straight line relation-
ship with other (X,Y) — x? = 36 for Hy : linearity
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4.9 Comparing Two Models

4.10 Summary: Possible Modeling Strategies

Strategy in a nutshell:

* Decide how many d.f. can be spent

* Decide where to spend them

* Spend them

* Don't reconsider, especially if inference needed

4.10.1 Developing Predictive Models

1.

Assemble accurate, pertinent data and lots of it, with wide distributions for
X.

Formulate good hypotheses — specify relevant candidate predictors and
possible interactions. Don’t use Y to decide which X'’s to include.

Characterize subjects with missing Y. Delete such subjects in rare circum-
stances . For certain models it is effective to multiply impute Y.

Characterize and impute missing X. In most cases use multiple imputation
based on X and Y

For each predictor specify complexity or degree of nonlinearity that should
be allowed (more for important predictors or for large n) (Section 4.1)

Do data reduction if needed (pre-transformations, combinations), or use pe-
nalized estimation

7. Use the entire sample in model development

Can do highly structured testing to simplify “initial” model
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10.

11.
12.
13.

14.
15.

16.

17.

18.

19.

20.

(a) Test entire group of predictors with a single P-value
(b) Make each continuous predictor have same number of knots, and select
the number that optimizes AIC

Check linearity assumptions and make transformations in X's as needed but
beware.

Check additivity assumptions by testing pre-specified interaction terms. Use
a global test and either keep all or delete all interactions.

Check to see if there are overly-influential observations.
Check distributional assumptions and choose a different model if needed.

Do limited backwards step-down variable selection if parsimony is more im-
portant that accuracy . But confidence limits, etc., must account for variable
selection (e.g., bootstrap).

This is the “final” model.

Interpret the model graphically and by computing predicted values and ap-
propriate test statistics. Compute pooled tests of association for collinear
predictors.

Validate this model for calibration and discrimination ability, preferably using
bootstrapping.

Shrink parameter estimates if there is overfitting but no further data reduction
is desired (unless shrinkage built-in to estimation)

When missing values were imputed, adjust final variance-covariance matrix
for imputation. Do this as early as possible because it will affect other find-
ings.

When all steps of the modeling strategy can be automated, consider using
Faraway’s method to penalize for the randomness inherent in the multiple
steps.

Develop simplifications to the final model as needed.
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4.10.2 Developing Models for Effect Estimation
1. Less need for parsimony; even less need to remove insignificant variables
from model (otherwise CLs too narrow)

2. Careful consideration of interactions; inclusion forces estimates to be condi-
tional and raises variances

3. If variable of interest is mostly the one that is missing, multiple imputation
less valuable

4. Complexity of main variable specified by prior beliefs, compromise between
variance and bias

5. Don’t penalize terms for variable of interest

6. Model validation less necessary

4.10.3 Developing Models for Hypothesis Testing

1. Virtually same as previous strategy

2. Interactions require tests of effect by varying values of another variable, or
“main effect + interaction” joint tests (e.g., is treatment effective for either
sex, allowing effects to be different)

3. Validation may help quantify overadjustment
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Resampling, Validating, Describing, and
Simplifying the Model

5.1 The Bootstrap

* If know population model, use simulation or analytic derivations to study
behavior of statistical estimator

* Suppose Y has a cumulative dist. fctn. F'(y) = Prob{Y <y}

* We have sample of size n from F(y),
5/17 5/27 MR Yn

* Steps:
1. Repeatedly simulate sample of size n from F

2. Compute statistic of interest
3. Study behavior over B repetitions

* Example: 1000 samples, 1000 sample medians, compute their sample vari-
ance

101
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* F unknown — estimate by empirical dist. fctn.

Fy) = 5 ST <)

where I(w) is 1 if w is true, 0 otherwise.

* Example: sample of size n = 30 from a normal distribution with mean 100
and SD 10

1.0+
0.8+

0.6+

Prob[X < z]

0.44

0.0+

I I |
40 60 80 100 120 140

X

Figure 5.1: Empirical and population cumulative distribution functions

* F,, corresponds to density function placing probability % at each observed
data point (% if point duplicated £ times)

* Pretend that ' = F,,

* Sampling from F,, = sampling with replacement from observed data Y;,...,Y,
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- Large n — selects 1 — e~! ~ 0.632 of original data points in each bootstrap
sample at least once

* Some observations not selected, others selected more than once

* Efron’s bootstrap — general-purpose technique for estimating properties of
estimators without assuming or knowing distribution of data F’

* Take B samples of size n with replacement, choose B so that summary
measure of individual statistics ~ summary if B = co

* Bootstrap based on distribution of observed differences between a resam-
pled parameter estimate and the original estimate telling us about the dis-
tribution of unobservable differences between the original estimate and the
unknown parameter

Example: Data (1, 5,6,7,8,9), obtain 0.80 confidence interval for population me-
dian, and estimate of population expected value of sample median (only to esti-
mate the bias in the original estimate of the median).

First 20 samples:
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Bootstrap Sample Sample Median

166699
556788
111589
111589
168889
167899
668899
117889
157899
566677
168899
156699
167889
167799
157899
567999
556788
666788
111169
157799

6.0
6.5
3.0
3.0
8.0
7.5
8.0
7.5
7.5
6.0
8.0
6.0
7.5
7.0
7.5
8.0
6.5
6.5
1.0
7.0
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* Histogram tells us whether we can assume normality for the bootstrap medi-

* Need high B for quantiles, low for variance (but see )

5.2 Model Validation

5.2.1

Introduction

ans or need to use quantiles of medians to construct C.L.

* External validation (best: another country at another time); also validates

sampling, measurements
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Figure 5.2: Estimating properties of sample median using the bootstrap

* Internal
— apparent (evaluate fit on same data used to create fit)

— data splitting
— cross-validation

— bootstrap: get overfitting-corrected accuracy index
* Best way to make model fit data well is to discard much of the data
* Predictions on another dataset will be inaccurate

* Need unbiased assessment of predictive accuracy

5.2.2 Which Quantities Should Be Used in Validation?

- OLS: R? is one good measure for quantifying drop-off in predictive ability



CHAPTER 5. RESAMPLING, VALIDATING, DESCRIBING, AND SIMPLIFYING THE MODEL 106

* Example: n = 10,p = 9, apparent R? = 1 but R? will be close to zero on new
subjects

 Example: n = 20, p = 10, apparent R? = .9, R? on new data 0.7, R, = 0.79

adj

- Adjusted R? solves much of the bias problem assuming p in its formula is the
largest number of parameters ever examined against Y

* Few other adjusted indexes exist
* Also need to validate models with phantom d.f.

* Cross-validation or bootstrap can provide unbiased estimate of any index;
bootstrap has higher precision

* Two main types of quantities to validate

1. Calibration or reliability: ability to make unbiased estimates of response
(Yvs.Y)
2. Discrimination: ability to separate responses

OLS: R?; binary logistic model: ROC area, equivalent to rank correlation
between predicted probability of event and 0/1 event

* Unbiased validation nearly always necessary, to detect overfitting

5.2.3 Data-Splitting

* Split data into training and test sets
* Interesting to compare index of accuracy in training and test

* Freeze parameters from training
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* Make sure you allow R? =1 — SSE/SST for test sample to be < 0

* Don’t compute ordinary R? on X3 vs. Y; this allows for linear recalibration
aXB+bvs. Y

* Test sample must be large enough to obtain very accurate assessment of
accuracy

* Training sample is what'’s left

* Example: overall sample n = 300, training sample n = 200, develop model,

freeze 3, predict on test sample (n = 100), R2 =1 — %

* Disadvantages of data splitting:

1. Costly in | n

2. Requires decision to split at beginning of analysis

3. Requires larger sample held out than cross-validation

4. Results vary if split again

5. Does not validate the final model (from recombined data)
6. Not helpful in getting CL corrected for var. selection

5.2.4 Improvements on Data-Splitting: Resampling

* No sacrifice in sample size
* Work when modeling process automated
* Bootstrap excellent for studying arbitrariness of variable selection

* Cross-validation solves many problems of data splitting
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* Example of x-validation:

1. Split data at random into 10 tenths
2. Leave out - of data at a time

3. Develop model on 1% including any variable selection, pre-testing, etc.

4. Freeze coefficients, evaluate on -
5. Average R? over 10 reps

* Drawbacks:

1. Choice of number of groups and repetitions
2. Doesn’t show full variability of var. selection
3. Does not validate full model

4. Lower precision than bootstrap

5.2.5 Validation Using the Bootstrap

* Estimate optimism of final whole sample fit without holding out data

* From original X and Y select sample of size n with replacement

* Derive model from bootstrap sample

* Apply to original sample

* Simple bootstrap uses average of indexes computed on original sample
* Estimated optimism = difference in indexes

* Repeat about B = 100 times, get average expected optimism

* Subtract average optimism from apparent index in final model
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* Example: n = 1000, have developed a final model that is hopefully ready to
publish. Call estimates from this final model £.

— final model has apparent R? (R? ) =0.4

app

— how inflated is R;,?

— get resamples of size 1000 with replacement from original 1000
— for each resample compute R:, , = apparent 12 in bootstrap sample

— freeze these coefficients (call them @boot), apply to original (whole) sample
(Xori97 Y;)rig) to get R?. = R? (XOTigﬁboota }/om'g)

orig
— optimism = R}, — R?
P = Yoot orig

— average over B = 100 optimisms to get optimism

2 _ 2 —_— s
- Roverfitting corrected Rapp — opltimasm

Use bootstrap to choose between full and reduced models:

* Bootstrap estimate of accuracy for full model
* Repeat, using chosen stopping rule for each re-sample
* Full fit usually outperforms reduced model

* Stepwise modeling often reduces optimism but this is not offset by loss of
information from deleting marginal var.
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Method Apparent Rank  Over- Bias-Corrected
Correlation of  Optimism Correlation
Predicted vs.

Observed
Full Model 0.50 0.06 0.44
Stepwise Model 0.47 0.05 0.42

In this example, stepwise modeling lost a possible 0.50 — 0.47 = 0.03 predictive
discrimination. The full model fit will especially be an improvement when

1. The stepwise selection deleted several variables which were almost signifi-
cant.

2. These marginal variables have some real predictive value, even if it’s slight.

3. There is no small set of extremely dominant variables that would be easily
found by stepwise selection.

5.3 Describing the Fitted Model

* Regression coefficients if 1 d.f. per factor, no interaction
* Not standardized regression coefficients

* Many programs print meaningless estimates such as effect of increasing
age? by one unit, holding age constant

* Need to account for nonlinearity, interaction, and use meaningful ranges

» For monotonic relationships, estimate X3 at quartiles of continuous vari-
ables, separately for various levels of interacting factors

* Subtract estimates, anti-log, e.g., to get inter-quartile-range odds or hazards
ratios. Base C.L. on s.e. of difference.
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* Plot effect of each predictor on X3 or some transformation of X
* Nomogram

* Use regression tree to approximate the full model

5.4 Simplifying the Final Model by Approximating It

5.4.1 Difficulties Using Full Models

* Predictions are conditional on all variables, standard errors T when predict
for a low-frequency category

* Collinearity

* Can average predictions over categories to marginalize, | s.e.

5.4.2 Approximating the Full Model

* Full model is gold standard

* Approximate it to any desired degree of accuracy

* If approx. with a tree, best c-v tree will have 1 obs./node

- Can use least squares to approx. model by predicting Y = X3

* When original model also fit using least squares, coef. of approx. model
against Y = coef. of subset of variables fitted against Y (as in stepwise)
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* Model approximation still has some advantages

1. Uses unbiased estimate of o from full fit
2. Stopping rule less arbitrary
3. Inheritance of shrinkage

112
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S Software

S allows interaction spline functions, wide variety of predictor parameterizations,
wide variety of models, unifying model formula language, model validation by
resampling.

S is comprehensive:

* Easy to write S functions for new models — wide variety of modern regres-
sion models implemented (trees, nonparametric, ACE, AVAS, survival mod-
els for multiple events)

* Designs can be generated for any model — all handle “class” var, interac-
tions, nonlinear expansions

* Single S objects (e.g., fit object) can be self-documenting — automatic hy-
pothesis tests, predictions for new data

* Superior graphics

* Classes and generic functions

113
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6.1 The S Modeling Language

S statistical modeling language:

response ~ terms

y ~ age + sex # age + sex main effects
y ~ age + sex + age:sex # add second-order interaction
y ~ age*sex # second-order interaction +

# all main effects
y ~ (age + sex + pressure) 2
# age+sex+pressure+age:sex+age:pressure...
y ~ (age + sex + pressure) 2 - sex:pressure
# all main effects and all 2nd order
# interactions except sex:pressure
y ~ (age + race)*sex # age+race+sex+age:sex+race:sex
y ~ treatment*(age*race + agex*sex) # no interact. with race,sex
sqrt(y) ~ sex*sqrt(age) + race
# functions, with dummy variables generated if
# race is an S factor (classification) variable

y ~ sex + poly(age,2) # poly generates orthogonal polynomials
race.sex <« interaction(race,sex)
y ~ age + race.sex # for when you want dummy variables for

# all combinations of the factors

The formula for a regression model is given to a modeling function, e.g.

lrm(y ~ rcs(x,4))

is read “use a logistic regression model to model y as a function of x, represent-
ing x by a restricted cubic spline with 4 default knots™2.

update function: re-fit model with changes in terms or data:

f «— lrm(y ~ recs(x,4) + x2 + x3)

f2 < update(f, subset=sex=="male")

f3 «— update(f, .~.-x2) # remove x2 from model

f4 < update(f, .~. + rcs(x5,5))# add rcs(x5,5) to model

f5 «— update(f, y2 ~ .) # same terms, new response var.

@1rm and rcs are in the Design library.
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6.2 User-Contributed Functions

* S is high-level object-oriented language.

* S-PLUS 3.4, 4.5, 2000, 6.0 (UNIX, Linux, Microsoft Windows)

* R (UNIX, Linux, Mac, Windows)

* Multitude of user-contributed functions on statLib

* International community of users through s-news

Some S functions:

* See Venables and Ripley

* Hierarchical clustering: hclust

* Principal components: princomp, prcomp

* Canonical correlation: cancor

* ACE: ace

* areg.boot (Harrell)

* Rank correlation methods:
rcorr, hoeffd, spearman2 (Harrell)

* Variable clustering: varcius (Harrell)
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* transcan, aregImpute (Harrell)
* Correspondence analysis: see Web page

* Restricted cubic spline design matrix:
rcspline.eval (Harrell)

* Re-state restricted spline in simpler form: rcspline.restate

6.3 The Design Library

* datadist function to compute predictor distribution summaries

y ~ sex + lsp(age,c(20,30,40,50,60)) +
sex %ia’% lsp(age,c(20,30,40,50,60))

E.g. restrict age x cholesterol interaction to be of form AF(B) + BG(A):

y ~ lsp(age,30) + rcs(cholesterol,4) +
1sp(age,30) %ia’% rcs(cholesterol,4)

Special fitting functions by Harrell to simplify procedures described in these
notes:
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Table 6.1: Design Fitting Functions

Function Purpose Related S
Functions
ols Ordinary least squares linear model 1m
lrm Binary and ordinal logistic regression model  gim
Has options for penalized MLE
psm Accelerated failure time parametric survival survreg
models
cph Cox proportional hazards regression coxph
bj Buckley-James censored least squares model survreg,im
glmD Design version of gim glm
Table 6.2: Design Transformation Functions
Function Purpose Related S
Functions
asis No post-transformation (seldom used explicitly) 1
rcs Restricted cubic splines ns
pol Polynomial using standard notation poly
1sp Linear spline
catg Categorical predictor (seldom) factor
scored Ordinal categorical variables ordered
matrx Keep variables as group for anova and fastbw matrix
strat Non-modeled stratification factors strata

(used for cph only)
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Function Purpose Related Functions
print Print parameters and statistics of fit
coef Fitted regression coefficients
formula Formula used in the fit
specs Detailed specifications of fit
robcov Robust covariance matrix estimates
bootcov Bootstrap covariance matrix estimates
and bootstrap distributions of estimates
pentrace Find optimum penalty factors by tracing

effective.df

summary
plot.summary

anova
plot.anova
contrast

plot

gendata

predict

fastbw
residuals
sensuc
which.influence
latex

Dialog

Function

Hazard

Survival

Quantile

Mean

nomogram
survest
survplot
validate
calibrate
vif

naresid

naprint
impute
fit.mult.impute

effective AIC for a grid of penalties

Print effective d.f. for each type of variable
in model, for penalized fit or pentrace result
Summary of effects of predictors

Plot continuously shaded confidence bars
for results of summary

Wald tests of most meaningful hypotheses
Graphical depiction of anova

General contrasts, C.L., tests

Plot effects of predictors

Easily generate predictor combinations
Obtain predicted values or design matrix
Fast backward step-down variable selection
(or resid) Residuals, influence stats from fit

Sensitivity analysis for unmeasured confounder

Which observations are overly influential
IATEX representation of fitted model

Create a menu to enter predictor values
and obtain predicted values from fit

S function analytic representation of X 3
from a fitted regression model

S function analytic representation of a fitted
hazard function (for psm)

S function analytic representation of fitted
survival function (for psm, cph)

S function analytic representation of fitted
function for quantiles of survival time

(for psm, cph)

S function analytic representation of fitted
function for mean survival time

Draws a nomogram for the fitted model
Estimate survival probabilities (psm, cph)
Plot survival curves (psm, cph)

Validate indexes of model fit using resampling
Estimate calibration curve using resampling
Variance inflation factors for fitted model
Bring elements corresponding to missing data
back into predictions and residuals

Print summary of missing values

Impute missing values

step

residuals
Function
Function

nomogram

latex, plot
survfit

plot.survfit

val.prob

aregImpute
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Example:

* treat: categorical variable with levels "a","b", "c"

* num.diseases: ordinal variable, 0-4

* age: continuous
Restricted cubic spline

* cholesterol: continuous
(3 missings; use median)
log(cholesterol+10)

* Allow treat X cholesterol interaction

* Program to fit logistic model, test all effects in design, estimate effects (e.g.
inter-quartile range odds ratios), plot estimated transformations

library(Design, T) # make new functions available
ddist <« datadist(cholesterol, treat, num.diseases, age)
# Could have used ddist < datadist(data.frame.name)
options(datadist="ddist") # defines data dist. to Design
cholesterol « impute(cholesterol)
fit <« lrm(y ~ treat + scored(num.diseases) + rcs(age) +
log(cholesterol+10) + treat:log(cholesterol+10))
describe(y ~ treat + scored(num.diseases) + rcs(age))
# or use describe(formula(fit)) for all variables used in fit
# describe function (in Hmisc) gets simple statistics on variables
# fit — robcov(fit) # Would make all statistics that follow
# use a robust covariance matrix
# would need x=T, y=T in Irm()

specs(fit) # Describe the design characteristics
anova(fit)

anova(fit, treat, cholesterol) # Test these 2 by themselves
plot(anova(fit)) # Summarize anova graphically
summary (fit) # Estimate effects using default ranges
plot (summary(fit)) # Graphical display of effects with C.1.

summary(fit, treat="b", age=60) # Specify reference cell and adjustment val



CHAPTER 6. S SOFTWARE 120

summary (fit, age=c(50,70)) # Estimate effect of increasing age from
#50t0 70

summary(fit, age=c(50,60,70)) # Increase age from 50 to 70, adjust to
# 60 when estimating effects of other
# factors

# If had not defined datadist, would have to define ranges for all var.

# Estimate and test treatment (b-a) effect averaged over 3 cholesterols
contrast(fit, list(treat=’b’, cholesterol=c(150,200,250)),
list(treat=’a’, cholesterol=c(150,200,250)),
type=’average’)

plot(fit, age=seq(20,80,length=100), treat=NA, conf.int=F)
# Plot relationship between age and log
# odds, separate curve for each treat,
#no C.l.
plot(fit, age=NA, cholesterol=NA)# 3-dimensional perspective plot for age,
# cholesterol, and log odds using default
# ranges for both variables
plot(fit, num.diseases=NA, fun=function(x) 1/(l+exp(-x)) ,
ylab="Prob", conf.int=.9) # Plot estimated probabilities instead of
# log odds
# Again, if no datadist were defined, would have to tell plot all limits
logit «— predict(fit, expand.grid(treat="b",num.dis=1:3,age=c(20,40,60),
cholesterol=seq(100,300,length=10)))
# Could also obtain list of predictor settings interactively
logit «— predict(fit, gendata(fit, nobs=12))

# Since age doesn’t interact with anything, we can quickly and

# interactively try various transformations of age, taking the spline
# function of age as the gold standard. We are seeking a linearizing
# transformation.

ag < 10:80

logit « predict(fit, expand.grid(treat="a", num.dis=0, age=ag,
cholesterol=median(cholesterol)), type="terms")[,"age"]

# Note: if age interacted with anything, this would be the age

# "main effect” ignoring interaction terms

# Could also use

# logit — plot(f, age=ag, ...)$x.xbeta[,2]

# which allows evaluation of the shape for any level of interacting

# factors. When age does not interact with anything, the result from

# predict(f, ..., type="terms”) would equal the result from

# plot if all other terms were ignored

# Could also specify
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# logit « predict(fit, gendata(fit, age=ag, cholesterol=...))
# Un-mentioned variables set to reference values

plot(ag™.5, logit) # try square root vs. spline transform.
plot(ag~1.5, logit) # try 1.5 power

latex(fit) # invokes latex.Irm, creates fit.tex

# Draw a nomogram for the model fit

nomogram(fit)

# Compose S function to evaluate linear predictors analytically

g <

Function(fit)

g(treat="b’, cholesterol=260, age=50)
# Letting num.diseases default to reference value

To examine interactions in a simpler way, you may want to group age into tertiles:

age.tertile « cut2(age, g=3)
# For automatic ranges later, add age.tertile to datadist input

fit

6.4

«— lrm(y ~ age.tertile * rcs(cholesterol))

Other Functions

supsmu: Friedman’s “super smoother”

1owess: Cleveland’s scatterplot smoother

gln: generalized linear models (see gimb)

gam: Generalized additive models

rpart: Like original CART with surrogate splits for missings, censored data
extension (Atkinson & Therneau)

tree: classification and regression trees
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* validate.tree iN Design

* loess: multi-dimensional scatterplot smoother

f < loess(y ~ age * pressure)

plot(f) # cross-sectional plots

ages « seq(20,70,length=40)

pressures « seq(80,200,length=40)

pred « predict(f, expand.grid(age=ages, pressure=pressures))
persp(ages, pressures, pred) # 3-d plot



Chapter 9

Overview of Maximum Likelihood
Estimation

* In ordinary least squares regression, main objective function (criterion for
deriving () is SSE

* If residuals are normally distributed, the resulting least squares estimates
are optimal (consistently estimate 3 as n — oo and have lowest variances
among unbiased estimates)

* Other fitting criteria such as minimizing sum of absolute errors are needed
for non-normal residuals (or residuals not assumed to be symmetrically dis-
tributed)

* With binary Y a drastic change is needed

* Need a general way to write down a good fitting criterion for many different
types of Y and for any distribution of Y| X

* Maximum likelihood (ML) is a general solution
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- (3 is the vector of values of 5 making the data most likely to have been ob-
served given = (3

* Example: 1-sample binomial problem

* Single unknown P = probability of an event in a population unknown param-
eter, the probability of an event in a population.

* Occurrence of the event signaled by Y = 1, non-occurrence by Y = 0, for an
individual

* Prob{Y =1} =P
* Draw a random sample of size n = 3 from the population
* Observed occurrences of events Y = 1,0, 1

* Assuming individuals in the sample act completely independently, probability
of intersection of the 3 events is P(1 — P)P = P2?(1 — P); this joint probability
is called the likelihood

* P is unknown but the ML estimate (MLE) is ready to be computed by solving
for P that makes the likelihood of the observed data the maximum

* In other words, the MLE of P is that value which makes the population pa-
rameter most consistent with the observed data (or the data most likely to
have arisen from that population)

* Optimum value of P is the value giving the maximum likelihood, which is also
the value where the slope of the likelihood vs. P is zero
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- Slope of the likelihood is P? — P?; first derivative is 2P — 3P? = P(2 — 3P)
- Setto zero;2—3P=0— P =2/3

* In general if Y is binary so that the sample is Y7,...,Y,, and s is XY, the
likelihood is

L = [[P(1-P)Y
1=1
= P*(1-pP)"*

* For numerical and statistical reasons we work with the log-likelihood function

log L = slog(P) + (n — s)log(1 — P)

* Slope of this function is 5 — =5

* Equating this function to zero requires that s/ P = (n—s)/(1— P). Multiplying

both sides of the equation by P(1 — P) yields s(1 — P) = (n — s)P or that
s=n—s)P+sP=nPP=p=s/n

* Later in logistic regression we allow for differences in subject characteristics
through X's instead of just addressing the one-sample problem as above

- Example: Y =101, X =181628 (n = 3,p = 1)

* If the model is Prob[Y = 1|X]| = 1/[1 + exp(—Fy — £1X)], the likelihood is
1

1 1
TFe—Gorois X [1— 1+e—(ﬁo+ﬁ116)] X {Te=Bo¥BI)

* Solve for 5y, 54

* Pis a function of X
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* Normal one-sample problem: /i = Y, MLE of o2 is s but with n in the de-

nominator instead of n — 1

- Normal regression problem: 3 = least squares estimates

9.1

Test Statistics

+ With normal distribution, test statistics are t and F

* These make use of 52

+ Other models do not have o2 parameter and do not use a normal distribution

* For one-parameter test with ML we use a z test (estimate divided by standard

error, is approximately normal)

- 2% is (estimate)?/(estimated variance) which has a y? distribution with 1 d.f.

* For p parameters, a joint test statistic is ng

" Epnp1 R L

X5
p

 z and y? statistics derived from estimates and standard errors are called

Wald statistics

- Statistics that have even better agreement with the x? distribution are likeli-

hood ratio y?

* These are computed by subtracting the best log likelihood from the log like-

lihood evaluated at the null hypothesis and multiplying by -2
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- LR \* statistics do not assume that the log likelihood is quadratic like the
normal distribution’s
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Binary Logistic Regression

Y =0,1
* Time of event not important

* InC(Y|X) Cis Prob{Y =1}

10.1 Model
Prob{Y = 1|X} = [1 + exp(—X3)] "
P =1+ exp(—z)] "
0= %
P=il
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X

Figure 10.1: Logistic function
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« e XB — O
10.1.1 Model Assumptions and Interpretation of Parameters

logit{V = 1| X} = logit(P) =log[P/(1 — P)]
= X0,

* Increase X; by d — increase odds Y = 1 by exp(f;d), increase log odds by

Bid.

* If there is only one predictor X and that predictor is binary, the model can be
written

logit{Y = 1| X =0} = S
logit{V = 1| X =1} = [+ 5.

* One continuous predictor:

logit{Y = 1| X} = 6y + /1 X,

* Two treatments (indicated by X; = 0 or 1) and one continuous covariable
(X2).
logit{Y = 1| X} = By + 51 X1 + (2 X5,

logit{Y =1|X; =0,Xo} = [+ %X,
loglt{Y = 1|X1 = 1,X2} = ﬁ() + 61 + B2X2.
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10.1.2 Odds Ratio, Risk Ratio, and Risk Difference

* Odds ratio capable of being constant

* Ex: risk factor doubles odds of disease

Without Risk Factor | With Risk Factor
Probability Odds | Odds Probability
2 .25 5 .33
5 1 2 .67
.8 4 8 .89
.9 9 18 .95
.98 49 98 .99
o
(-}
10
- / - T~ ~
/ S
4 T / 5 N
o o / - - N
a4 / 4 . N
g / T~ N\
Q 7 / R 3 ‘\\\ . N N
3 ST U0,
5 «| ./ ~ SN
s o |/ 2 NN
| 1/,/ ///-:]f\\ \:\‘\
—_ 5 T~ N
m l////’._--""'--]5 ------ \\\ \\\‘t\\
VL oo TIIITEAN
S 4/’- """"""""""""""" D
< ) ) ) ) ) )
0.0 0.2 0.4 0.6 0.8 1.0

Risk for Subject Without Risk Factor

Figure 10.2: Absolute benefit as a function of risk of the event in a control subject
and the relative effect (odds ratio) of the risk factor. The odds ratios are given for
each curve.

Let X be a binary risk factor and let A = { Xy, ..., X,,} be the other factors.
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Then the estimate of Prob{Y = 1|X; =1, A} — Prob{Y =1|X; =0, A} is

1
1+exp—[fo+ 01+ o Xo+ ... + 5,X,)]
1
1+exp—[fo+ oXo+ ...+ 5,X,)]

_ ! _
T+ (SEyexp(—h)

where R = Prob]Y = 1|X; =0, A].

. . P — X8
Risk ratio is Tre X

eX18

* Does not simplify like odds ratio, which is &5 = el17%2)8

10.1.3 Detailed Example

TABLE OF SEX BY RESPONSE

SEX RESPONSE

Frequency

Row Pct 0 1 Total 0dds/Log

F 14 6 20 6/14=.429
70.00 30.00 -.847

M 6 14 20 14/6=2.33
30.00 70.00 .847

Total 20 20 40

M:F odds ratio = (14/6)/(6/14) = 5.44, log=1.695

STATISTICS FOR TABLE OF SEX BY RESPONSE
Statistic DF Value Prob

Chi Square 1 6.400 0.011
Likelihood Ratio Chi-Square 1 6.583 0.010
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Figure 10.3: Data, subgroup proportions, and fitted logistic model
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Fitted Logistic Model

Parameter Estimate  Std Err  Wald 2 P
5o -0.8472978 0.48795 3.015237
01 1.6945956 0.69007 6.030474 0.0141

Log likelihood (5, =0) : -27.727
Log likelihood (max) : -24.435
LR x%(Hy : 31 = 0) . -2(-27.727- -24.435) = 6.584

Next, consider the relationship between age and response, ignoring sex.

TABLE OF AGE BY RESPONSE

AGE RESPONSE

Frequency

Row Pct 0 1 Total 0dds/Log

<45 8 5 13 5/8=.625
61.5 38.4 -.47

45-54 6 6 12 6/6=1
50.0 50.0 0

55+ 6 9 15 9/6=1.5
40.0 60.0 .405

Total 20 20 40

55+ : <45 odds ratio = (9/6)/(5/8) = 2.4, log=.875
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Fitted Logistic Model

Parameter Estimate  Std Err  Wald 2 P
Bo -2.7338405 1.83752 2.213422 0.1368
51 0.0539798 0.03578 2.276263 0.1314

135

The estimate of 3, is in rough agreement with that obtained from the frequency
table. The 55+:<45 log odds ratio is .875, and since the respective mean ages
in the 55+ and <45 age groups are 61.1 and 40.2, an estimate of the log odds

ratio increase per year is .875/(61.1-40.2)=.875/20.9=.042.

The likelihood ratio test for Hy: no association between age and response is

obtained as follows:
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Log likelihood (3; = 0)
Log likelihood (max)
LR X2(H() . 61 = O)

-27.727
-26.511

-2(-27.727- -26.511) = 2.432

(Compare 2.432 with the Wald statistic 2.28.)
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Next we consider the simultaneous association of age and sex with response.

SEX=F
AGE RESPONSE
Frequency
Row Pct 0 1
<45 4 0
100.0 0.0
45-54 4 1
80.0 20.0
55+ 6 5
54.6 45.4
Total 14 6
SEX=M
AGE RESPONSE
Frequency
Row Pct 0 1
<45 4 5
44 .4 55.6
45-54 2 5
28.6 71.4
55+ 0 4
0.0 100.0
Total 6 14

Total

11

20

Total

20

A logistic model for relating sex and age simultaneously to response is given

below.
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Fitted Logistic Model

Parameter Estimate  Std Err  Wald 2 P
Bo -9.8429426 3.67576 7.17057 0.0074
51 (sex) 3.4898280 1.19917 8.46928 0.0036

B2 (age) 0.1580583 0.06164 6.57556 0.0103

Likelihood ratio tests are obtained from the information below.

Log likelihood (8, = 0,06, =0) : -27.727

Log likelihood (max) : -19.458

Log likelihood (3; = 0) : -26.511

Log likelihood (8, = 0) : -24.435

LR \2 (Hy : 1 = 2 = 0) . -2(-27.727- -19.458)= 16.538
LR v2 (Hy : B = 0) sex|lage  : -2(-26.511- -19.458) = 14.106
LR x? (Hy : o = 0) age|sex  : -2(-24.435- -19.458) = 9.954

The 14.1 should be compared with the Wald statistic of 8.47, and 9.954 should
be compared with 6.58. The fitted logistic model is plotted separately for females
and males in Figure 10.3. The fitted model is

logit{Response = 1|sex, age} = —9.84 + 3.49 x sex + .158 x age,

where as before sex=0 for females, 1 for males. For example, for a 40 year old
female, the predicted logit is —9.84 + .158(40) = —3.52. The predicted probability
of a response is 1/[1 + exp(3.52)] = .029. For a 40 year old male, the predicted
logit is —9.84 + 3.49 4 .158(40) = —.03, with a probability of .492.

10.1.4 Design Formulations

* Can do ANOVA using k£ — 1 dummies for a k-level predictor
- Can get same y? statistics as from a contingency table

* Can go farther: covariable adjustment
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* Simultaneous comparison of multiple variables between two groups: Turn
problem backwards to predict group from all the dependent variables

* This is more robust than a parametric multivariate test

* Propensity scores for adjusting for nonrandom treatment selection: Predict
treatment from all baseline variables

* Adjusting for the predicted probability of getting a treatment adjusts ade-
quately for confounding from all of the variables

* In a randomized study, using logistic model to adjust for covariables, even
with perfect balance, will improve the treatment effect estimate

10.2 Estimation

10.2.1 Maximum Likelihood Estimates

Like binomial case but Ps vary; 3 computed by trial and error using an iterative
maximization technique

10.2.2 Estimation of Odds Ratios and Probabilities

P = [1+exp(—X;B)] "
{1+ exp[—(X;3 + zs)]} .

10.3 Test Statistics

* Likelihood ratio test best
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* Score test second best (score x? = Pearson ?)

* Wald test may misbehave but is quick

10.4 Residuals

Partial residuals (to check predictor transformations)

10.5 Assessment of Model Fit

logit{Y = 1| X} = [y + 1 X1 + S X,

logit
X =0
{Y=1} :

X,

139

Figure 10.4: LOgQIStiC regression assumptions for one binary and one continuous pre-

dictor
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log odds

Figure 10.5: LOQit proportions of significant coronary artery disease by sex and
deciles of age for n=3504 patients, with spline fits (smooth curves). Spline fits
are for k = 4 knots at age=36, 48, 56, and 68 years, and interaction between
age and sex is allowed. Smooth nonparametric estimates are shown as dotted
curves. Data courtesy of the Duke Cardiovascular Disease Databank.
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Can verify by plotting stratified proportions

A

P = number of events divided by stratum size

O=-"L

1—

3

Plot log O (scale on which linearity is assumed)

Stratified estimates are noisy

1 or 2 Xs — nonparametric smoother

plsmo function makes it easy to use loess to compute logits of nonparametric

estimates (fun=qlogis)

General: restricted cubic spline expansion of one or more predictors

logit{Y = 1|X}

logit{Y = 1|X}

= Bo+ (1 X1 + 02 Xo + B3 Xb + Bu XY
= [o+ 45Xy + f(Xe),

= Lo+ 51 X1+ (o X + O3 X5 + 04 X7
+05 X1 X2 + Be X1.X5 + 57 X1 X5



CHAPTER 10. BINARY LOGISTIC REGRESSION

Model / Hypothesis Likelihood d.f. P Formula
Ratio 2

a: sex, age (linear, no interaction) 766.0 2

b: sex, age, age x sex 768.2 3

C: sex, spline in age 769.4 4

d: sex, spline in age, interaction 782.5 7

Hy : no age x sex interaction 2.2 1 .14  (b—a)
given linearity

Hj : age linear | no interaction 3.4 2 18 (c—a)

Hy : age linear, no interaction 16.6 5 .005 (d—a)

H, : age linear, product form 14.4 4 .006 (d—0)
interaction

Hy : no interaction, allowing for 13.1 3 .004 (d—o

nonlinearity in age

* Example of finding transform. of a single continuous predictor

* Duration of symptoms vs. odds of severe coronary disease

* Look at AIC to find best # knots for the money

Model x> AIC
99.23 97.23
112.69 108.69
121.30 115.30
123.51 115.51
124.41 114.51

OO0k WOolxX

* Sample of 2258 pts

* Predict significant coronary disease

* For now stratify age into tertiles to examine interactions simply

142
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TN Logistic Regression Model, n=2332 d=1129
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Figure 10.6: EStimated relationship between duration of symptoms and the log odds
of severe coronary artery disease for k = 5. Knots are marked with arrows. Solid
line is spline fit; dotted line is a nonparametric “super-smoothed” estimate.
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Figure 10.7: Fitted linear logistic model in log,,(duration+1), with subgroup esti-
mates using groups of 150 patients. Fitted equation is logit(tvdim) = —.9809 +
7122 log;,(months + 1).
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* Model has 2 dummies for age, sex, age x sex, 4-knot restricted cubic spline
in cholesterol, age tertile x cholesterol

s~
-7
[57,82] PPRtd
m =
T o -
S
S
X))
S
O -
) ) ) )
100 200 300 400
cholesterol

Figure 10.8: Log odds of significant coronary artery disease modeling age with two dummy variables

anova(fit)
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Wald Statistics

Factor 2 df. P
age.tertile (Main+Interactions) 112.62 10 0.0000
All Interactions 22.37 8 0.0043
sex (Main+Interactions) 328.90 3 0.0000
All Interactions 9.61 2 0.0082
cholesterol (Main+Interactions) 94.01 9 0.0000
All Interactions 10.03 6 0.1234
Nonlinear (Main+Interactions) 10.30 6 0.1124
age.tertile * sex 9.61 2 0.0082
age.tertile * cholesterol 10.08 6 0.1232
Nonlinear Interaction : f(A,B)vs. AB 240 4 0.6635
TOTAL NONLINEAR 10.30 6 0.1124
TOTAL INTERACTION 22.37 8 0.0043
TOTAL NONLINEAR+INTERACTION 30.12 10 0.0008
TOTAL 404.94 14 0.0000

* Now model age as continuous predictor

* Start with nonparametric surface using Y = 0/1

* Next try parametric fit using linear spline in age, chol. (3 knots each), all
product terms

* Next try smooth spline surface, include all cross-products
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Figure 10.9: Local regression fit for the probability of significant coronary disease vs.
age and cholesterol for males, based on the S-PLUS 10ess function
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Figure 10.11: Restricted cubic spline surface in two variables, each with k = 4 knots
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Wald Statistics
Factor
age * cholesterol
Nonlinear Interaction : f(A, B) vs. AB
f(A,B)vs. Af(B)+ Bg(A)
Nonlinear Interaction in age vs. Af(B)
Nonlinear Interaction in cholesterol vs. Bg(A)

X2

12.95
7.27
5.41
6.44
6.27

* Now restrict surface by excluding doubly nonlinear terms

OO0~ 00O

0.1649
0.5078
0.2480
0.3753
0.3931

150

Figure 10.12: Restricted cubic spline fit with age x spline(cholesterol) and cholesterol x spline(age)
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Wald Statistics
Factor Y2 df. P
age * cholesterol 10.83 5 0.0548
Nonlinear Interaction : f(A, B) vs. AB 3.12 4 0.5372
Nonlinear Interaction in age vs. Af(B) 1.60 2 0.4496
Nonlinear Interaction in cholesterol vs. Bg(A) 1.64 2 0.4399

* Finally restrict the interaction to be a simple product The Wald test for age x

<
NSNS SIS IS S

RS AS S S S SIS P
Sl m -

SS
AN

10g0dds
32-1012 3 4

Figure 10.13: Spline fit with nonlinear effects of cholesterol and age and a simple product interaction

cholesterol interaction yields x? = 7.99 with 1 d.f., p=.005.

* See how well this simple interaction model compares with initial model using
2 dummies for age

* Request predictions to be made at mean age within tertiles
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Figure 10.14: Predictions from linear interaction model with mean age in tertiles indicated.
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* Using residuals for “duration of symptoms” example

- SRS MR MR L S AL ] WoOoW O RBe
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Partial Residual
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- \ ! . o o ®°°° \.
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]

cad.dur logdur

Figure 10.15: Partial residuals for duration and log,,(duration+1). Data density shown
at top of each plot.

* Relative merits of strat., nonparametric, splines for checking fit

Method Choice Assumes Uses Ordering Low Good
Required  Additivity of X Variance Resolution
on X

Stratification Intervals
Smootheron X; | Bandwidth X X X
stratifying on X (not on X3) (if min. strat.) (X1)
Smooth partial Bandwidth X X X X
residual plot
Spline model Knots X X X X
for all Xs

* Hosmer-Lemeshow test is a commonly used test of goodness-of-fit of a bi-
nary logistic model

Compares proportion of events with mean predicted probability within deciles
of P

— Arbitrary (number of groups, how to form groups)

— Low power (too many d.f.)
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— Does not reveal the culprits

* A new omnibus test based of SSE has more power and requires no grouping;
still does not lead to corrective action.

* Any omnibus test lacks power against specific alternatives such as nonlin-
earity or interaction

10.6 Collinearity
10.7 Overly Influential Observations

10.8 Quantifying Predictive Ability

* Generalized R?: equals ordinary R? in normal case:

o 1—exp(—=LR/n)

R2 —
N1 —exp(=LY/n)’

* Brier score (calibration + discrimination):
12 -
B=— Z(PZ - Y;)27
ni=1
* ¢ = “concordance probability” = ROC area

* Related to Wilcoxon-Mann-Whitney stat and Somers’ D,

D,, = 2(c—.5).

* “Percent classified correctly” has lots of problems
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10.9 Validating the Fitted Model

* Possible indexes

— Accuracy of P: calibration
Plot m against estimated prob. that Y = 1 on new data

— Discrimination: C or D,,
- R*or B

* Use bootstrap to estimate calibration equation
P. = Prob{Y = 1|X3} = [1 + exp— (0 + mX3)] 7},
Epnaz(a,b) = max |P — P,

a<P<b

* Bootstrap validation of age-sex-response data, 80 samples

* 2 predictors forced into every model

Table 10.1: Validation of 2-variable Logistic Model

Index Original Training Test  Optimism Corrected
Sample Sample Sample Index
D,, 0.70 0.70 0.67 0.03 0.66
R? 0.45 0.47 0.43 0.04 0.41
Intercept | 0.00 0.00 0.00 0.00 0.00
Slope 1.00 1.00 0.91 0.09 0.91
FEraz 0.00 0.00 0.02 0.02 0.02
D 0.39 0.42 0.36 0.06 0.33
U -0.05 -0.05 0.02 -0.07 0.02
Q 0.44 0.47 0.35 0.12 0.32
B 0.16 0.15 0.17 -0.02 0.18
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* Allow for step-down at each re-sample

* Use individual tests at o = 0.10

* Both age and sex selected in 76 of 80, neither in 1 sample

Table 10.2: Validation of 2-variable Stepwise Model

Index Original Training Test  Optimism Corrected
Sample Sample Sample Index
D,, 0.70 0.71 0.66 0.05 0.64
R? 0.45 0.50 0.42 0.07 0.38
Intercept | 0.00 0.00 0.04 -0.04 0.04
Slope 1.00 1.00 0.86 0.14 0.86
FEraz 0.00 0.00 0.04 0.04 0.04
D 0.39 0.45 0.36 0.09 0.30
U -0.05 -0.05 0.02 -0.07 0.02
Q 0.44 0.50 0.34 0.16 0.27
B 0.16 0.15 0.18 -0.03 0.19

* Try adding 5 noise candidate variables

156
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Number of Factors Selected
Frequency

oo O
wW —
o N

O w

o~

~ O

* The first 15 patterns of factors selected are:

age sex x1 x2 x3 x4 x5

Table 10.3: Validation of Model with 5 Noise Variables

Index Original Training Test  Optimism Corrected

Sample Sample Sample Index
D,, 0.70 0.32 0.26 0.05 0.64
R? 0.45 0.23 0.17 0.06 0.39
Intercept | 0.00 0.00 -0.03 0.03 -0.03
Slope 1.00 1.00 0.85 0.15 0.85
Ea 0.00 0.00 0.04 0.04 0.04
D 0.39 0.21 0.13 0.07 0.32
U -0.05 -0.05 0.03 -0.08 0.03
Q 0.44 0.26 0.10 0.15 0.29
B 0.16 0.20 0.23 -0.03 0.19

10.10 Describing the Fitted Model

157
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Factor Low High Diff. Effect S.E. Lower Upper
0.95 0.95
age 46 59 13 090 0.21 0.49 1.32
Odds Ratio 46 5 13 247 NA 163 3.74
cholesterol 196 259 63 0.79 0.18 0.44 1.15
Odds Ratio 196 259 63 2.21 NA 155 3.17
sex - female:male 1 2 NA -246 015 -2.75 -2.16
Odds Ratio 1 2 NA 009 NA 006 012

Odds Ratio

0.10 1.50 3.00

age i 59:46 L [ [ : ?’ql Qg Q.I [ IQ. [ 9’6 [
cholesterol - 259:196 o

sex - female:male |
Adjusted to:age=52 sex=male cholesterol=224

Figure 10.16: OQddS ratios and confidence bars, using quartiles of age and cholesterol
for assessing their effects on the odds of coronary disease.

10.11 S-PLuUS Functions
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Figure 10.17: Linear spline fit for probability of bacterial vs. viral meningitis as a
function of age at onset . Copyrighted 1989, American Medical Associated.
Reprinted by permission.
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CURVES DERIVED FROM INDIVIDUAL BEST FIT

b=
o

(o)
o

PREDICTED PROBABILITY
=)
F
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MYOCARDIUM AT RISK {g)

CURVES DERIVED FROM 3INGLE SIOPE ESTIMATE
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L 1 : 1
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Figure 10.18: (A) Relationship between myocardium at risk and ventricular fibrillation,
based on the individual best fit equations for animals anesthetized with pento-
barbital and «-chloralose. The amount of myocardium at risk at which 0.5 of the
animals are expected to fibrillate (MARs) is shown for each anesthetic group.
(B) Relationship between myocardium at risk and ventricular fibrillation, based
on equations derived from the single slope estimate. Note that the MAR5, de-
scribes the overall relationship between myocardium at risk and outcome when
either the individual best fit slope or the single slope estimate is used. The shift
of the curve to the right during «-chloralose anesthesia is well described by the
shift in MAR;. Test for interaction had P=0.10 . Reprinted by permission, NRC
Research Press.
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Figure 10.19: A nomogram for estimating the likelihood of significant coronary artery
disease (CAD) in women. ECG = electrocardiographic; Ml = myocardial infarc-
tion . Reprinted from American Journal of Medicine, Vol 75, Pryor DB et al.,
“Estimating the likelihood of significant coronary artery disease”, p. 778, Copy-
right 1983, with permission from Excerpta Medica, Inc.
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Figure 10.20: Nomogram for estimating probability of bacterial (ABM) vs. viral (AVM)
meningitis. Step 1, place ruler on reading lines for patient's age and month
of presentation and mark intersection with line A; step 2, place ruler on val-
ues for glucose ratio and total polymorphonuclear leukocyte (PMN) count in cer-
brospinal fluid and mark intersection with line B; step 3, use ruler to join marks
on lines A and B, then read off the probability of ABM vs. AVM . Copyrighted

1989, American Medical Associated. Reprinted by permission.
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Figure 10.21: Nomogram relating age, sex, and cholesterol to the log odds and to the
probability of significant coronary artery disease. Select one axis corresponding
fo sex and to age € {30, 40, 50, 60, 70}. There was linear interaction between age
and sex and between age and cholesterol. 0.70 and 0.90 confidence intervals

are shown (0.90 in gray). Note that for the “Linear Predictor’

"scale there are var-

ious lengths of confidence intervals near the same value of X 3, demonstrating

that the standard error of X 3 depends on the individual X values. Also note that
confidence intervals corresponding to smaller patient groups (e.g., females) are

wider.



Chapter 11

Ordinal Logistic Regression

11.1 Background

* Levels of Y are ordered; no spacing assumed
* If no model assumed, one can still assess association between X and Y

* Example: Y = 0,1, 2 corresponds to no event, heart attack, death. Test of
association between race (3 levels) and outcome (3 levels) can be obtained
from a 2 x 2 d.f. x? test for a contingency table

* If willing to assuming an ordering of Y and a model, can test for association
using 2 x 1 d.f.

* Proportional odds model: generalization of Wilcoxon-Mann-Whitney-Kruskal-
Wallis-Spearman

* Can have n categories for n observations!

164
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* Continuation ratio model: discrete proportional hazards model

11.2 Ordinality Assumption

* Assume X is linearly related to some appropriate log odds

* Estimate mean X|Y with and without assuming the model holds

11.3 Proportional Odds Model

11.3.1 Model

* Walker & Duncan — most popular ordinal response model

* For convenience Y =0,1,2,...,k

1

Priy > jIX] = — exp[—(a; + XfB)]’

where j =1,2,... k.
* «; is the logit of Prob[Y” > j] when all X's are zero
* Odds]Y > j|X] = exp(a; + X5)
* Odds[Y > j|X,, = a+ 1]/ 0dds[Y > j|X,, = a] = e
+ Same odds ratio e’ forany j =1,2,...,k

eaj-‘rXﬁ

- Odds[Y > j|X] / Odds[Y > v|X] = S = oo
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* Odds[Y > j|X] = constantx Odds[Y > v|X]

* Assumes OR for 1 unit increase in age is the same when considering the
probability of death as when considering the probability of death or heart
attack

* PO model only uses ranks of Y; same Bs if transform Y; is robust to outliers

11.3.2 Assumptions and Interpretation of Parameters
11.3.3 Estimation

11.3.4 Residuals

* Construct binary events Y > j,7 = 1,2,..., k and use corresponding pre-

dicted probabilities
- 1

Pi'_ NER)
T 1+ exp[—(a; + X0)]

* Score residual for subject i predictor m:

Uim = Xim([Yi = §] = By),
* For each column of U plot mean U.,, and C.L. against Y

* Partial residuals are more useful as they can also estimate covariable trans-
formations :
A Yi— b
Tim = Bsz’m + ==,
F(1-P)

where
1

P = -
1 + exp[—(a+ X;0)]
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* Smooth r;, vs. X;,, to estimate how X, relates to the log relative odds that
Y = 11X,

* For ordinal Y compute binary model partial res. for all cutoffs j:

R > il — P
TimzﬁmXim_f—[Y}_]] pra
Py Ry)

11.3.5 Assessment of Model Fit

* Section 11.2

* Stratified proportions Y > j, 5 = 1,2,..., k, since logit(Y > j|X) — logit(Y >
i|X) = o — ay, for any constant X

11.3.6 Quantifying Predictive Ability
11.3.7 Validating the Fitted Model

11.3.8 S-PLus Functions

The pesign library’s 1rm function fits the PO model directly, assuming that the
levels of the response variable (e.g., the 1evels of a factor variable) are listed in
the proper order.

The S-PLUS functions popower and posamsize (in the Hmisc library) compute power
and sample size estimates for ordinal responses using the proportional odds
model.

The function pilot.xmean.ordinaly in Design cOMputes and graphs the quantities de-
scribed in Section 11.2. It plots simple Y -stratified means overlaid with £(X|Y =
), with j on the z-axis. The E's are computed for both PO and continuation ratio
ordinal logistic models.
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Figure 11.1: Checking PO assumption separately for a series of predictors. The cir-
cle, triangle, and plus sign correspond toY > 1,2, 3, respectively. PO is checked
by examining the vertical constancy of distances between any two of these three
symbols. Response variable is the severe functional disability scale stam2 from
the 1000-patient SUPPORT dataset, with the last two categories combined be-
cause of low frequency of coma/intubation.
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The Hmisc library’s summary.formula function is also useful for assessing the PO
assumption.

Generic Design functions such as validate, calibrate, and nomogram work with PO
model fits from 1rm as long as the analyst specifies which intercept(s) to use.



Chapter 16

Introduction to Survival Analysis

16.1 Background

* Use when time to occurrence of event is important
* Don’t just count events; event at 6m worse than event at 9y
* Response called failure time, survival time, event time

* Ex: time until CV death, light bulb failure, pregnancy, ECG abnormality dur-
ing exercise

* Allow for censoring
* Ex: By f/u study; subject still alive at 5y has failure time 5+
* Length of f/u can vary

* Even in a well-designed randomized clinical trial, survival modeling can allow

170
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one to

1. Test for and describe interactions with treatment. Subgroup analyses can
easily generate spurious results and they do not consider interacting fac-
tors in a dose-response manner. Once interactions are modeled, relative
treatment benefits can be estimated (e.g., hazard ratios), and analyses
can be done to determine if some patients are too sick or too well to have
even a relative benefit.

2. Understand prognostic factors (strength and shape).

3. Model absolute clinical benefit. First, a model for the probability of sur-
viving past time ¢ is developed. Then differences in survival probabilities
for patients on treatments A and B can be estimated. The differences will
be due primarily to sickness (overall risk) of the patient and to treatment
interactions.

4. Understand time course of treatment effect. The period of maximum
effect or period of any substantial effect can be estimated from a plot of
relative effects of treatment over time.

5. Gain power for testing treatment effects.
6. Adjust for imbalances in treatment allocation.

16.2 Censoring, Delayed Entry, and Truncation

* Left-censoring

* Interval censoring

* Left-truncation (unknown subset of subjects who failed before qualifying for
the study)

* Delayed entry (exposure after varying periods of survival)

* Choice of time zero important
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* Take into account waiting time bias
* Usually have random type | censoring (on duration, not # events)

* Must usually have non-informative censoring:
censoring independent of impending failure

* Intention-to-treat is a preventative measure

16.3 Notation, Survival, and Hazard Functions

* T = response variable

S(t) = Prob{T > t} =1 — F(t),

* Hazard function (force of mortality; instantaneous event rate)

* ~ Prob{event will occur in small interval around ¢ given has not occurred
before ¢}

* Very useful for learning about mechanisms and forces of risk over time

Prob{t < T <t +u|T > t
A(t) = lim LoD < TS P ull > 8

u—0 u

which using the law of conditional probability becomes
Prob{t < T <t + u}/Prob{T > t}

A0 =t u
o [P0 — F@)]/u
S
OF (1) /0t



CHAPTER 16. INTRODUCTION TO SURVIVAL ANALYSIS 173
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Figure 16.1: Survival function
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Figure 16.2: Cumulative hazard function
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Figure 16.3: Hazard function
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_ 10
S(t)’
OlogS(t) 0S(t)/ot  f(t)
oo St S@)
At = _81025@)’
/Ot)\(v)dv = —log S(t).
A(t) = —log S(t),

S(t) = exp[—A(t)].

* Expected value of A(T) =1
T,=S"(1—-q).
Tos = S~0.5).

T, = A'[-log(1 — q)] and as a special case,

Ts5 = A '(log2).

o :/0 S(v)dv.
* Event time for subject i: T;
* Censoring time: C;

* Event indicator:

e; = 1 if the event was observed (7; < (),

= 0 if the response was censored (7; > C}).

* The observed response is

}/;' = min(ﬂ) Cz)a

176
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Termination of Study

Figure 16.4: Some censored data. Circles denote events.

16.4 Homogeneous Failure Time Distributions

* Exponential distribution: constant hazard
A(t) = At and
S(t) = exp(—A(t)) = exp(—At).
T()_5 = 10g(2)/)\

* Weibull distribution
At) = anyt?!
A(t) = ot
S(t) = exp(—at?).

Tos = [(log2)/a]'/.

* The restricted cubic spline hazard model with k£ knots is

k-2

Me(t) =a+bt+ > vw;i(t),
=1

177
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Figure 16.5: Some Weibull hazard functions with « = 1 and various values of
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16.5 Nonparametric Estimation of S and A

16.5.1 Kaplan—Meier Estimator

* No censoring —
Sp(t) = [number of T; > t|/n.

* Kaplan—Meier (product-limit) estimator

Day No. Subjects Deaths Censored Cumulative

At Risk Survival
12 100 1 0 99/100 = .99
30 99 2 1 97/99 x 99/100 = .97
60 96 0 3 96/96 x .97 = .97
72 93 3 0 90/93 x .97 = .94

SKM(t) = H (1 — d,/nz)

1., <t
* The Kaplan—Meier estimator of A(t) is Ak (t) = — log Sk (t).

* Simple example
1336789 107

179
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11 7 1 6/7
2 3 6 2 4/6
3 9 2 1 1/2

Skm(t) = 1, 0<t<]1
= 6/7T=.85, 1<t<3
= (6/7)(4/6) = 57, 3<t<9
— (6/7)(4/6)(1/2) = 29, 9 <t < 10.

1.0

0.8

0.6

0.4

Survival Probability

0.2

Figure 16.6: Kaplan—Meier product-limit estimator with 0.95 confidence bands. The
Altschuler—Nelson—Aalen—Fleming—Harrington estimator is depicted with the
dashed lines.

Yiti<t dif [ni(ni — d;)]

Var{log Axu(t)} = {Zii<t log[(n; — d;i) /ni] }?
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SKM(t)exp(ﬁ:zs).
16.5.2 Altschuler—Nelson Estimator
A d.;
Alt) = Y —
iti<t Ti

Sa(t) = exp(—A(t))

16.6 Analysis of Multiple Endpoints

* Cancer trial: recurrence of disease or death
* CV trial: nonfatal Ml or death
* Analyze usual way but watch out for differing risk factors

* Analyzing multiple causes of terminating event —
Cause-specific hazards, censor on cause not currently analyzed
Not assume mechanism for cause removal or correlations of causes
Problem if apply to a setting where causes are removed differently

* More complex if explicitly handle mixture of nonfatal outcomes with fatal out-
come
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16.6.1

16.6.2

16.6.3

16.6.4

16.6.5

Competing Risks

Competing Dependent Risks

State Transitions and Multiple Types of Nonfatal Events

Joint Analysis of Time and Severity of an Event

Analysis of Multiple Events

16.7 S-PLUS Functions

* event.chart iN Hmisc draws a variety of charts for displaying raw survival time
data, for both single and multiple events per subject (see also event.history)

* Analyses in this chapter can be done as special cases of the Cox model

* Particular functions for this chapter (no covariables) from Therneau:

* surv function: Combines time to event variable and event/censoring indicator
into a single survival time matrix object

* Right censoring: surv(y, event); event IS event/censoring indicator, usually
coded 1/F, O=censored 1=event or 1=censored 2=event. If the event status
variable has other coding, e.g., 3 means death, use Surv(y, s==3).

* survfit: Kaplan—Meier and other nonparametric survival curves

units(y) <- "Month"

# Default is "Day” - used for axis labels, etc.

survfit(Surv(y, event) ~ svarl + svar2 + ... , data, subset,
na.action=na.delete,
type=c("kaplan-meier","fleming-harrington"),
error=c("greenwood","tsiatis"), se.fit=T,
conf.int=.95,
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conf .type=c("log-log","log","plain","none"))

If there are no stratification variables (svart, ...), omit them. To print a table
of estimates, use
f «— survfit(. . .)

print (f) # print brief summary of f
summary(f, times, censored=F, digits=3)

For failure times stored in days, use

f «— survfit(Surv(futime, event) ~ sex)
summary (f, seq(30,180,by=30))

to print monthly estimates.
To plot the object returned by survfit, use

plot(f, conf.int=T, mark.time=T, mark=3, col=1, lty=1,
lwd=1, cex=1, log=F, yscale=1, xscale=1,
xlab="", ylab="", xaxs="i", ...)

This invokes pilot.survfit. YOU can also use survplot in Design (here, actually
survplot.survfit) for other options that include automatic curve labeling and
showing the number of subjects at risk at selected times. Figure 16.6 was
drawn with the statements

tt « c(1,3,3,6,8,9,10)

stat «— ¢(1,1,1,0,0,1,0)

S < Surv(tt, stat)

survplot (survfit(S),conf="bands",n.risk=T,xlab="t")

survplot (survfit (S, type="fleming-harrington", conf.int=F),
add=T, 1ty=3)

Stratified estimates, with four treatments distinguished by line type and curve
labels, could be drawn by
units(y) <- "Year"

f «— survfit(Surv(y, stat) ~ treatment)
survplot(f, ylab="Fraction Pain-Free")

* bootkm function in Hmisc bootstraps Kaplan—Meier survival estimates or Kaplan—
Meier estimates of quantiles of the survival time distribution. It is easy to use
bootkm t0 compute for example a nonparametric confidence interval for the
ratio of median survival times for two groups.
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Cox Proportional Hazards Regression
Model

19.1 Model

19.1.1 Preliminaries

* Most popular survival model
* Semi-parametric (nonparametric hazard; parametric regression)
* Usually more interest in effects of X than on shape of A(?)

* Uses only rank ordering of failures/censoring times — more robust, easier to
write protocol

* Even if parametric PH assumptions true, Cox still fully efficient for

* Model diagnostics are advanced

184
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* Log-rank test is a special case with one binary X

19.1.2 Model Definition

At X) = A(t) exp(X3).

* No intercept parameter

* Shape of A\ not important

19.1.3 Estimation of
19.1.4 Model Assumptions and Interpretation of Parameters

19.1.5 Example

Model Group Regression S.E.  Wald Group 2:1
Coefficient p Value Hazard Ratio

Cox (Exact) -0.629 0.361 0.08 0.533
Cox (Efron) -0.569 0.347 0.10 0.566
Cox (Breslow) -0.596 0.348 0.09 0.551
Exponential -0.093 0.334 0.78 0.911
Weibull (AFT) 0.132 0.061 0.03

Weibull (PH) -0.721 0.486

19.1.6 Design Formulations

* k — 1 dummies for k treatments, one treatment — \(t)

* Only provides relative effects

185
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Figure 19.1: Altschuler-Nelson-Fleming-Harrington nonparametric survival estimates
and Cox-Breslow estimates for rat data
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19.1.7 Extending the Model by Stratification

* Is a unique feature of the Cox model

* Adjust for non-modeled factors

* Factors too difficult to model or fail PH assumption

* Commonly used in RCTs to adjust for site variation

* Allow form of A to vary across strata

* Rank failure times within strata

* b strata, stratum ID is C
X, C=j) = Aj(t)exp(X), or
SHX.C=j) = (1),

* Not assume connection between shapes of );

* By default, assume common

* Ex: model age, stratify on sex
Estimates common age slope pooling F and M
No assumption about effect of sex except no age interact.

* Can stratify on multiple factors (cross-classify)
* Loss of efficiency not bad unless number of events in strata very small

* Stratum with no events is ignored
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* Estimate (5 by getting separate log-likelihood for each stratum and adding up
(independence)

* No inference about strat. factors

* Useful for checking PH and linearity assumptions: Model, then stratify on an
X

* Can extend to strata x covariable interaction

At X1, C=1) = Ai(t) exp(f1.X1)
>\<t|X1, C = 2) = )\Q(t) exp(ﬁle -+ BQXl)
At X1, C = j) = \j(t) exp(B1. X1 + 2 X2)

* X, is product interaction term (0 for F, X for M)

* Are testing interaction with sex without modeling main effect!

19.2 Estimation of Survival Probability and Secondary Parameters

- Kalbfleisch-Prentice discrete hazard model method — K-M if 3 = 0

* Breslow method — Nelson et al. if /3 =0

S(1X) = S(tyP9,

* Stratified model — estimate underlying hazard parameters separately within
strata

* “Adjusted K-M estimates”



CHAPTER 19. COX PROPORTIONAL HAZARDS REGRESSION MODEL 189
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Figure 19.2: Unadjusted (Kaplan-Meier) and adjusted (Cox-Kalbfleisch-Prentice) es-
timates of survival. Top, Kaplan-Meier estimates for patients treated medically
and surgically at Duke University Medical Center from November 1969 through
December 1984. These survival curves are not adjusted for baseline prognos-
tic factors. Numbers of patients alive at each follow-up interval for each group
are given at the bottom of the figure. Bottom, survival curves for patients treated
medically or surgically after adjusting for all known important baseline prognostic
characteristics Rebrinted by bermission American Medical Association
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. d;
Alt) = > —.
iti<t Dy;>t, €Xp(X;0)
For any X, the estimates of A and S are
MHX) = A@ep(xd)
S(t1X) = exp[-A(t) exp(X )],

19.3 Test Statistics

19.4 Residuals

Residual Purposes
martingale Assessing adequacy of a hypothesized predictor
transformation; Graphing an estimate of a
predictor transformation (Section 19.5.1)
score Detecting overly influential observations

Schoenfeld Testing PH assumption (Section 19.5.2)
Graphing estimate of hazard ratio function
(Section 19.5.2)

19.5 Assessment of Model Fit

19.5.1 Regression Assumptions

- Stratified KM estimates have problems

* 2000 simulated subject, d = 368, 1196 M, 804 F

* Exponential with known log hazard, linear in age, additive in sex
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>\<t|X1, XQ) = .02 exp[.8X1 + 04(X2 — 50)],

log[-log S(3)]
3

-------

20 30 40 50 60 70 80
Age

Figure 19.3: Kaplan-Meier log A estimates by sex and deciles of age, with 0.95 con-
fidence limits.

Better: A 4-knot spline Cox PH model in two variables (X, X5) which as-
sumes linearity in X; and no X; x X, interaction

AX) = At)exp(B51 Xy + G X + B3X5 + 04 X7),
= A(t) exp(51 X1 + f(X2)),
f(X2) = 32Xy + 35X5 + 04 X5
log A(t| X) = log A(t) + 51 X1 + f(X2).
To not assume PH in X3, stratify on it:
log A(t|X2,C' = j) = logA;(t) + 51Xz + B X5 + B3.X5
= logA;(t) + f(Xa).

Formal test of linearity: Hy : 3, = 33 = 0, x> = 4.84, 2 d.f., P = 0.09.
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log[-log S(3)]
3

20 30 40 50 60 70 80
Age

Figure 19.4: Cox PH model stratified on sex, using spline function for age, no inter-
action. 0.95 confidence limits also shown.
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* Model allowing interaction with sex strata:

log A(HX, C = j) = logAy(t) + 61X
+ ﬁzXé + 53Xé/
+ BiX1 X + B X1 X5 + B X1 X5

Test for interaction: P = 0.33.

log[-log S(3)]
3

Age

Figure 19.5: Cox PH model stratified on sex, with interaction between age spline and
sex. 0.95 confidence limits are also shown.

* Example of modeling a single continuous variable (left ventricular ejection
fraction), outcome = time to cardiovascular death

LVEF = LVEF if LVEF <0.5,
= 05 if IVEF > 0.5,

The AICs for 3, 4, 5, and 6-knots spline fits were respectively 126, 124, 122,
and 120. Smoothed residual plot: Martingale residuals, loess smoother
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o ~
,_;- . "\‘ Cox Regression Model, n=979 events=198
I > S Statistic X2 df

B A Model L.R. 129.92 2 AIC= 125.92
0 KN . Association Wald 157.45 2 p= 0.000
- " Linearity Wald 9.59 1 p= 0.002

log Relative Hazard
2

LVEF

Figure 19.6: Restricted cubic spline estimate of relationship between LVEF and rel-
ative log hazard from a sample of 979 patients and 198 cardiovascular deaths.
Data from the Duke Cardiovascular Disease Databank.
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* One vector of residuals no matter how many covariables

- Unadjusted estimates of regression shape obtained by fixing 5 = 0 for all X's

o loess Fit and 0.95 Confidence Bars
- 1 N - ols Spline Fit and 0.95 Confidence Limits
- = — = lowess Smoother
=
o
7
O
e
o <O
=
o0
g
=
<
= <
o peg

0.2 0.4 0.6 0.8
LVEF

Figure 19.7: Three smoothed estimates relating martingale residuals to LVEF.

Purpose Method
Estimate transformation for Force (5, = 0 and compute
a single variable residuals off of the null regression
Check linearity assumption for Compute 5, and compute
a single variable residuals off of the linear regression
Estimate marginal Force 3, ..., 3, = 0 and compute
transformations for p variables residuals off the global null model
Estimate transformation for Estimate p — 1 s, forcing 3; = 0

variable i adjusted for other Compute residuals off of mixed
p — 1 variables global/null model
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19.5.2 Proportional Hazards Assumption
* Parallelism of log A plots
* Comparison of stratified and modeled estimates of S(t)
* Plot actual ratio of estimated A, or get differences in log A
* Plot A vs. cumulative number of events as ¢ |

- Stratify time, get interval-specific Cox regression coefficients:
In an interval, exclude all subjects with
event/censoring time before start of interval
Censor all events at end of interval

Time  Observations Deaths Log Hazard Standard

Interval Ratio Error
[0,209) 40 12 -0.47 0.59
[209, 234) 27 12 -0.72 0.58
234 + 14 12 -0.50 0.64

Overall Cox 3 = —0.57.

* VA Lung Cancer dataset, squamous vs. (small, adeno)

Time  Observations Deaths Log Hazard Standard

Interval Ratio Error
[0,21) 110 26 -0.46 0.47
[21,52) 84 26 -0.90 0.50
[52,118) 59 26 -1.35 0.50
118 + 28 26 -1.04 0.45

Estimates for Karnofsky performance status weight over time:



CHAPTER 19. COX PROPORTIONAL HAZARDS REGRESSION MODEL 197

Cumulative Hazard Ratio

1
150 200 250 300

Days

Figure 19.8: EStimate of A2 pased on — log of Altschuler-Nelson-Fleming-Harrington
nonparametric surwva/ estimates
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Time  Observations Deaths Log Hazard Standard

Interval Ratio Error
[0, 19] 137 27 -0.053 0.010
(19, 49) 112 26 -0.047 0.009
49, 99] 85 27 -0.036 0.012
99 + 28 26 -0.012 0.014

e Subset Estimate
----- 0.95 C.L.
= == Smoothed

0.2

Log Hazard Ratio
0.1

0.0

.~ A
el

0 2 4 6 8 10

Predictor:Pain/Ischemia Index
Event:cdeathmi

Figure 19.9: Stratified hazard ratios for pain/ischemia index over time. Data from the
Duke Cardiovascular Disease Databank.

* Schoenfeld residuals computed at each unique failure time

* Partial derivative of log L with respect to each X in turn

* Grambsch and Therneau scale to yield estimates of 5()
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* Can form a powerful test of PH (Z:PH in old SAS PROC PHGLM)

B+ dRV,

o loess Smoother, span=0.5, 0.95 C.L.
= =1t Super Smoother
=
o]
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E —
L O
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O
@)
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n
s S
2 )
<
O
n
—
S 7

Figure 19.10: Sroothed weighted Schoenfeld residuals for the same data in Fig-
ure 19.9. Test for PH based on the correlation (p) between the individual
weighted Schoenfeld residuals and the rank of failure time yielded p = —0.23, z =
—6.73,P =2 x 10711,

* Can test PH by testing ¢t x X interaction using time- dependent covariables

* Separate parametric fits, e.g. Weibull with differing ~; hazard ratio is

oA I
sOt-1 50 '
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t log Hazard

Ratio

10 -0.36
36 -0.64
83.5 -0.83
200 -1.02

* Interaction between X and spline function of ¢:

log A\(t|X) = log A(t) + 51 X + (o Xt + B3 Xt + By Xt",
The X + 1: X log hazard ratio function is estimated by

Bl + 3275 + 3375/ + 5475”-
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Assumptions of the Proportional Hazards Model

/\(t|X) — )\(t)eﬁlX1+/32Xz+---+ﬁpo

Variables Assumptions Verification
; Shape of A(t|X) for fixed X as ¢ 7
Shape of ()
Weibull: ¥
Categorical X:
check paral-

Interaction between X
and T

Proportional hazards — effect of X
does not depend on T. E.g. treat-
ment effect is constant over time.

lelism of stratified
log[—log S(t)] plots
astl

Muenz cum. hazard
ratio plots

Arjas cum. hazard
plots

Check agreement of
stratified and mod-
eled estimates

Hazard ratio plots

Smoothed Schoen-
feld residual plots
and correlation test
(time vs. residual)

Test time-dependent
covariable such as
X xlog(t+1)

Ratio of parametri-
cally estimated A(#)

Individual  Predictors
X

Shape of A(¢|X) for fixed t as X |
Linear: log A(¢|X) = log A(t) + 8X
Nonlinear: log A(t|X) = log A(t) +
f(X)

k-level ordinal X :
linear term + k — 2
dummy variables

Continuous X:
Polynomials, spline
functions, smoothed
martingale residual

plots

Interaction  between
X1 and Xo

Additive effects: effect of X; onlog A
is independent of X, and vice-versa

Test non-additive
terms, e.g. products

19.6 What to Do When PH Fails

* Test of association not needed — stratify

201
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Method Requires Requires ~ Computa- Yields Yields Requires  Must Choose
Grouping  Grouping tional Formal Estimate of Fitting 2 Smoothing
X t Efficiency Test A2 () /X1 (¢) Models Parameter
log[— log], Muenz, X X X
Arjas plots
Dabrowska log A X X X X
difference plots
Stratified vs. X X X
Modeled
Estimates
Hazard ratio plot X ? X X ?
Schoenfeld residual X X X
plot
Schoenfeld residual X X
correlation test
Fit time-dependent X X
covariables
Ratio of parametric X X X X X
estimates of \(¢)

* P-value for testing variable may still be useful (conservative)

* Survival estimates wrong in certain time intervals

* Can model non-PH:

AQIX) = Ao(t) exp(B1.X + B2.X x log(t + 1))

* Can also use time intervals:

A(t|X) = Xo(t) exp[1 X + G2 X x I(t > ¢)],

* Or fit one model for early follow-up, one for late

* Try another model, e.g. log-normal, log-logistic can have effects of X chang-
ing constantly over time

* Differences in mean restricted life length can be useful in comparing thera-
pies when PH fails
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19.7 Collinearity
19.8 Overly Influential Observations

19.9 AQuantifying Predictive Ability

Ry = 1—exp(—LR/n)

- 11— w2/n’
where w is the null model likelihood divided by the fitted model likelihood.
Divide by max attainable value to get R%..

* ¢ = concordance probability (predicted vs. observed)

* All possible pairs of subjects whose ordering of failure times can be deter-
mined

* Fraction of these for which X ordered same as Y
* Somers’ D,, = 2(c—0.5)
19.10 Validating the Fitted Model

Separate bootstrap validations for calibration and for discrimination.

19.10.1 Validation of Model Calibration

* Calibration at fixed ¢
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- Get S(t|X) for all subjects
* Divide into intervals each containing say 50 subjects
* Compare mean predicted survival with K-M

* Bootstrap this process to add back optimism in difference of these 2, due to
overfitting

* Ex: 20 random predictors, n = 200

S
§ i
N )
O‘ o
&N
=
-; —
z
= \O
9] O’ =
(e
.S
g i
i3
<
(-}
) ) ) ) )
0.60 0.65 0.70 0.75 0.80

Predicted 0.5 Year Survival

Figure 19.11: Calibration of random predictions using Efron’s bootstrap with B=50
re-samples and 40 patients per interval. Dataset has n=200, 100 uncensored
observations, 20 random predictors, x3, = 9.87. e: apparent calibration; X: bias-
corrected calibration.
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19.10.2 Validation of Discrimination and Other Statistical Indexes

Validate slope calibration (estimate shrinkage from overfitting):

A(t|X) = A(t) exp(7XD).

Index | Original Training  Test  Optimism Corrected
Sample Sample Sample Index
D,, -0.16 -0.31 -0.09 -0.22 0.06
R% 0.05 0.15 0.00 0.15 -0.10
Slope | 1.00 1.00 0.25 0.75 0.25
D 0.01 0.04 0.00 0.04 -0.02
U 0.00 0.00 0.00 0.00 0.00
Q 0.01 0.04 0.00 0.04 -0.02

19.11 Describing the Fitted Model

* Can use coefficients if linear and additive

* In general, use e.g. inter-quartile-range hazard ratios for various levels of
interacting factors

- Nomogram to compute X 3
- Also S(t|X) forafew t

* Can have axis for median failure time if sample is high risk
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1-Vessel Disease | } - 1
2-Vessel Disease } B {
3-Vessel Disease K l = {
75% Left Main | - | | 1970
95% Left Main
—= L
1-Vessel Disease % . |
2-Vessel Disease ——
3-Vessel Disease —— l
75% Left Main }—.—' | 1977
95% Left Main —— |
T
1-Vessel Disease ) L | J'
2-Vessel Disease ——
3-Vessel Disease —— |
75% Left Main —— | 1984
95%, Left Main - —
i 1 1 I
0 0.5 1.0 1.5 2.0 2.5
Benefit Detriment

Hazard Ratio

Figure 19.12: A display of an interaction between treatment, extent of disease, and
calendar year of start of treatment. Comparison of medical and surgical average
hazard ratios for patients treated in 1970, 1977, and 1984 according to coro-
nary anatomy. Closed squares represent point estimates; bars represent 0.95
confidence limits of average hazard ratios . Reprinted by permission, American
Medical Association.
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B Surgical=314
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Figure 19.13: CoXx-Kalbfleisch-Prentice survival estimates stratifying on treatment and
adjusting for several predictors. Estimates are for patients with left main disease

and normal or impaired ventricular function . Reprinted by permission, Mosby,
Inc. / Harcourt Health Sciences.
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Figure 19.14: Cox model predictions with respect to a continuous variable. X -axis
shows the range of the treadmill score seen in clinical practice and Y -axis shows
the corresponding 5-year survival probability predicted by the Cox regression
model for the 2842 study patients . Reprinted by permission, American College
of Physicians—American Society of Internal Medicine.
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Survival over Time

®
]
T

Medical Patients
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Unadjusted 2-Year Survival Probability
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s All Surgical Patients
1.0
95}
90+ ®% Cox Model
B8 Kaplan-Meier

85}

Surgical Hospital Survivors
.80

70 72 74 ‘ 2 ‘ '

76 Yeaf‘s 80 82 84
Figure 19.15: Modeled and stratified nonparametric survival estimates. Kaplan-Meier
observed 2 year survival (solid line) and estimated Cox model trends (dashed
line) for each year of entry into the study for all medical patients, surgical pa-
tients, and surgical survivors . Reprinted by permission, Mosby, Inc. / Harcourt
Health Sciences.
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Figure 19.16: Survival estimates for model stratified on sex, with interaction
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19.12 S-PLuUS Functions

19.12.1 Power and Sample Size Calculations, Hmisc Library

* cpower: computes power for a two-sample Cox test with random patient entry
over a fixed duration and a given length of minimum follow-up, using expo-
nential distribution with handling of dropout and drop-in

* ciapower: computes power of the Cox interaction test in a 2 x 2 setup using
the method of Peterson and George

* spower: Simulates power for 2-sample tests (the log-rank test by default) al-
lowing for very complex conditions such as continuously varying treatment
effect and non-compliance probabilities.

19.12.2 Cox Model using Design Library

* cph: slight modification of Therneau’s survival library coxph function
- print method prints the Nagelkerke index R% (Section 19.9)

* cph works with generic functions such as specs, predict, summary, anova, fastbw,

which.influence, latex, residuals, coef, nomogram, and plot,

* plot has an additional argument time for plotting cpn fits. It also has an argu-
ment 1oglog Which if T causes instead log -log survival to be plotted on the
y-axis.

* Survival.cph, Quantile.cph, Mean.cph create other S functions to evaluate sur-
vival probabilities, survival time quantiles, and mean and mean restricted
lifetimes, based on a cpn fit with surv=T
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* Quantile and Mean are especially useful with plot and nomogram. Survival iS
useful with nomogram

f « cph(..., surv=T)

med < Quantile(f)

nomogram(f, fun=function(x) med(lp=x),
funlabel=’Median Survival Time’)

# fun tranforms the linear predictors

srv « Survival(f)

rmean <« Mean(f, tmax=3, method=’approx’)

nomogram(f, fun=list(function(x) srv(3, x), rmean),
funlabel=c(’3-Year Survival Prob.’,’Restricted Mean’))

# med, srv, expected are more complicated if strata are present

Figures 19.3, 19.4, 19.5 and 19.16 were produced by

n « 2000

.Random.seed « c¢(49,39,17,36,23,0,43,51,6,54,50,1)

# to be able to re-generate same data

age < 50 + 12*rnorm(n)

label(age) <« "Age"

sex <- sample(c(’Male’,’Female’), n, rep=T, prob=c(.6, .4))

cens <« 15*runif(n)

h <« .02xexp(.04*(age-50)+.8%(sex=="Female’))

t < -log(runif(n))/h

e «— ifelse(t<=cens,1,0)

t <« pmin(t, cens)

units(t) « "Year"

age.dec « cut2(age, g=10, levels.mean=T)

Srv <« Surv(t,e)

f < cph(Srv ~ strat(age.dec)+strat(sex), surv=T)

# surv=T speeds up computations, and confidence limits

# when there are no covariables are still accurate.

plot(f, age.dec=NA, sex=NA, time=3, loglog=T,
val.lev=T, ylim=c(-5,-1))

f < cph(Srv ~ rcs(age,4)+strat(sex), x=T, y=T)

# Get accurate C.L. for any age

# Note: for evaluating shape of regression, we would not

# ordinarily bother to get 3-year survival probabilities -

# would just use X * beta. We do so here to use same scale
# as nonparametric estimates

f

anova(f)

ages < seq(20, 80, by=4)

# Evaluate at fewer points. Default is 100

# Take much RAM if we use the exact C.L. formula with n=100
plot(f, age=ages, sex=NA, time=3, loglog=T, ylim=c(-5,-1))

f «— cph(Srv ~ rcs(age,4)*strat(sex), x=T, y=T)

anova (f)

ages < seq(20, 80, by=6)

# Still fewer points - more parameters in model

plot(f, age=ages, sex=NA, time=3, loglog=T, ylim=c(-5,-1))
plot(f, age=ages, sex=NA, time=3)
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# Having x=T, y=T in fit also allows computation of
# influence statistics

resid(f, "dfbetas")

which.influence (f)

The S-PLUS program below demonstrates how several cph-related functions work
well with the nomogram function to display this last fit. Here predicted 3-year sur-
vival probabilities and median survival time (when defined) are displayed against
age and sex. The fact that a nonlinear effect interacts with a stratified factor is
taken into account.

stv «— Survival(f) # use an fthat used surv=T
# Define functions to compute 3-year estimates as a function
# of the linear predictors (X*Beta)
surv.f « function(lp) srv(3, lp, stratum="sex=Female")
surv.m « function(lp) srv(3, lp, stratum="sex=Male")
quant <« Quantile(f)
# Define functions to compute median survival time
med.f « function(lp) quant(.5, lp, stratum="sex=Female")
med.m < function(lp) quant(.5, 1lp, stratum="sex=Male")
nomogram(f, fun=list(surv.m, surv.f, med.m, med.f),
funlabel=c("S(3 | Male)","S(3 | Female)",
"Median (Male)","Median (Female)"),
fun.at=1list(c(.8,.9,.95,.98,.99),
c(.1,.3,.5,.7,.8,.9,.95,.98),
c(8,12),c(1,2,4,8,12)))
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Figure 19.17: Nomogram from a fitted stratified Cox model that allowed for interaction
between age and sex, and nonlinearity in age. The axis for median survival time
is truncated on the left where the median is beyond the last follow-up time.



Chapter 20

Modeling Longitudinal Responses using
Generalized Least Squares

20.1 Notation

* N subjects

* Subjecti (i =1,2,...,N) has n; responses measured at times ¢;1, t;2, ..., tin,
* Response at time ¢ for subject i: Yj;

* Subject i has baseline covariates X;

* Generally the response measured at time ¢;; = 0 is a covariate in X; instead
of being the first measured response Y;

* Time trend in response is modeled with £ parameters so that the time “main
effect” has k d.f.

214
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* Let the basis functions modeling the time effect be ¢1(t), g2(1), . . ., g (t)

20.2 Model Specification for Effects on E(Y)

20.2.1 Common Basis Functions

* k dummy variables for k£ + 1 unique times (assumes no functional form for
time but may spend many d.f.)

* k=1 for linear time trend, ¢,(t) =t

* k—order polynomial in ¢

* k + 1-knot restricted cubic spline (one linear term, k£ — 1 nonlinear terms)

20.2.2 Model for Mean Profile

* A model for mean time-response profile without interactions between time
and any X:

EYy|Xi] = XiB 4+ y191(t) + v292(t) + ... + Ygr(t)

* Model with interactions between time and some X'’s: add product terms for
desired interaction effects

* Example: To allow the mean time trend for subjects in group 1 (reference
group) to be arbitrarily different from time trend for subjects in group 2, have
a dummy variable for group 2, a time “main effect” curve with £ d.f. and all &
products of these time components with the dummy variable for group 2



CHAPTER 20. MODELING LONGITUDINAL RESPONSES USING GENERALIZED LEAST SQUARES 216

20.2.3 Model Specification for Treatment Comparisons

* In studies comparing two or more treatments, a response is often measured
at baseline (pre-randomization)

* Analyst has the option to use this measurement as Y;, or as part of X;

* Jim Rochon (Dept. of Biostatistics & Bioinformatics, Duke University) has the
following comments about this:

For RCTs, | draw a sharp line at the point when the intervention begins. The LHS is reserved for something
that is a response to treatment. Anything before this point can potentially be included as a covariate in the
regression model. This includes the "baseline” value of the outcome variable. Indeed, the best predictor of
the outcome at the end of the study is typically where the patient began at the beginning. It drinks up a lot of
variability in the outcome; and, the effect of other covariates is typically mediated through this variable.

| treat anything after the intervention begins as an outcome. In the western scientific method, an “effect” must
follow the "cause” even if by a split second.

Note that an RCT is different than a cohort study. In a cohort study, “Time 0” is not terribly meaningful. If we
want to model, say, the trend over time, it would be legitimate, in my view, to include the "baseline” value on the
LHS of that regression model.

Now, even if the intervention, e.g., surgery, has an immediate effect, | would include still reserve the LHS for
anything that might legitimately be considered as the response to the intervention. So, if we cleared a blocked
artery and then measured the MABP, then that would still be included on the LHS.

Now, it could well be that most of the therapeutic effect occurred by the time that the first repeated measure was
taken, and then levels off. Then, a plot of the means would essentially be two parallel lines and the treatment
effect is the distance between the lines, i.e., the difference in the intercepts.

If the linear trend from baseline to Time 1 continues beyond Time 1, then the lines will have a common intercept
but the slopes will diverge. Then, the treatment effect will the difference in slopes.

One point to remember is that the estimated intercept is the value at time 0 that we predict from the set of
repeated measures post randomization. In the first case above, the model will predict different intercepts even
though randomization would suggest that they would start from the same place. This is because we were
asleep at the switch and didn’t record the "action” from baseline to time 1. In the second case, the model will
predict the same intercept values because the linear trend from baseline to time 1 was continued thereafter.

20.3 Modeling Within-Subject Dependence

* Random effects and mixed effects models have become very popular

* Disadvantages:

— Induced correlation structure for Y may be unrealistic

— Numerically demanding
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— Require complex approximations for distributions of test statistics

* Extended linear model (with no random effects) is a logical extension of the
univariate model (e.g., few statisticians use subject random effects for uni-
variate Y)

* Pinheiro and Bates (Section 5.1.2) state that “in some applications, one may
wish to avoid incorporating random effects in the model to account for de-
pendence among observations, choosing to use the within-group component
A; to directly model variance-covariance structure of the response.”

* We will assume that Y;;| X; has a multivariate normal distribution with mean
given above and with variance-covariance matrix V;, an n; x n; matrix that is
a function of ¢;1, ..., t;,,

* We further assume that the diagonals of V; are all equal

* Procedure can be generalized to allow for heteroscedasticity over time or
with respect to X (e.g., males may be allowed to have a different variance
than females)

* This extended linear model has the following assumptions:

— all the assumptions of OLS at a single time point including correct model-
ing of predictor effects and univariate normality of responses conditional
on X

— the distribution of two responses at two different times for the same sub-
ject, conditional on X, is bivariate normal with a specified correlation
coefficient

— the joint distribution of all n; responses for the i'* subject is multivariate
normal with the given correlation pattern (which implies the previous two
distributional assumptions)
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— responses from any times for any two different subjects are uncorrelated

20.4 Parameter Estimation Procedure

* Generalized least squares

* Like weighted least squares but uses a covariance matrix that is not diagonal

* Each subject can have her own shape of V; due to each subject being mea-
sured at a different set of times

* Maximum likelihood

* Newton-Raphson or other trial-and-error methods used for estimating pa-
rameters

* For small number of subjects, advantages in using REML (restricted maxi-
mum likelihood) instead of ordinary MLE , (esp. to get more unbiased esti-
mate of the covariance matrix)

* When imbalances are not severe, OLS fitted ignoring subject identifiers may
be efficient

— But OLS standard errors will be too small as they don’t take intra-cluster
correlation into account

— May be rectified by substituting covariance matrix estimated from Huber-
White cluster sandwich estimator or from cluster bootstrap

* When imbalances are severe and intra-subject correlations are strong, OLS
is not expected to be efficient because it gives equal weight to each obser-
vation
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— a subject contributing two distant observations receives é the weight of a
subject having 10 tightly-spaced observations

20.5 Common Correlation Structures

* Usually restrict ourselves to isotropic correlation structures — correlation
between responses within subject at two times depends only on a measure
of distance between the two times, not the individual times

* We simplify further and assume depends on |¢t; — 5|

* Can speak interchangeably of correlations of residuals within subjects or
correlations between responses measured at different times on the same
subject, conditional on covariates X

* Assume that the correlation coefficient for Y;;, vs. Y;;, conditional on baseline
covariates X; for subject i is h(|t; — t2|, p), Where p is a vector (usually a
scalar) set of fundamental correlation parameters

* Some commonly used structures when times are continuous and are not
equally spaced :

Compound symmetry : h = pift| £y, 1ift; =t nlme corCompSymm
(Essentially what two-way ANOVA assumes)

Autoregressive-moving average lag 1 : h = pli=2l = p corCAR1
where s = [t; — 19|

Exponential : h = exp(—s/p) corExp

Gaussian : h = exp[—(s/p)2] corGaus

Linear : h = (1 — S/p)[(s < p) corLin

Rational quadratic : h =1 — (s/p)?/[1 + (s/p)?] corRatio

Spherical : h = [1 — 1.5(s/p) + 0.5(S/p)3]l(8 < p) corSpher
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The last 5 structures use p as a scaling parameter, not as something re-
stricted to be in [0, 1]

20.6 Checking Model Fit

* Constant variance assumption: usual residual plots

* Normality assumption: usual qq residual plots

* Correlation pattern: Variogram

— Estimate correlations of all possible pairs of residuals at different time
points

— Pool all estimates at same absolute difference in time s

— Variogram is a plot with y = 1 — h(s, p) vs. s on the z-axis

— Superimpose the theoretical variogram assumed by the model

20.7 S Software

* Nonlinear mixed effects model library of Pinheiro & Bates in S-PLUS and R

* For linear models, fitting functions are

— 1me for mixed effects models

— gls for generalized least squares without random effects

* R has a new version of gis
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* For this version the Design library has g1sD so that many features of Design
can be used:
anova : all partial Wald tests, test of linearity, pooled tests

sunmary © effect estimates (differences in Y) and confidence limits, can be
plotted

plot : continuous effect plots

nomogram . NOMOgram

Function : generate S function code for fitted model

latex : [ATEX representation of fitted model

In addition, g1sp has a bootstrap option (hence you do not use Design’s
bootcov fOr glsD fitS).

To get regular gis functions named anova (for likelihood ratio tests, AlC, etc.)
Or summary US€ anova.gls Ol summary.gls

* nlme package has many graphics and fit-checking functions

* Several functions will be demonstrated in the case study

20.8 Case Study

Consider the dataset in Table 6.9 of Davis from a multicenter, randomized con-
trolled trial of botulinum toxin type B (BotB) in patients with cervical dystonia from
nine U.S. sites.

* Randomized to placebo (N = 36), 5000 units of BotB (/N = 36), 10,000 units
of BotB (N = 37)

* Response variable: total score on Toronto Western Spasmodic Torticollis
Rating Scale (TWSTRS), measuring severity, pain, and disability of cervical
dystonia (high scores mean more impairment)
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- TWSTRS measured at baseline (week 0) and weeks 2, 4, 8, 12, 16 after
treatment began

* Dataset cdystonia from web site

20.8.1 Graphical Exploration of Data

library(Hmisc)

getHdata(cdystonia)

# Or load('cdystonia.sav’) if using R, data.restore(’cdystonia.sdd’) if using S-Plus
attach(cdystonia)

# Construct unique subject ID
uid < factor(paste(site,id))

# What is the frequency of each pattern of subjects’ time points?
table(tapply(week, uid, function(w) paste(sort(unique(w)), collapse=’ ’)))

0 024 0241216 0248 024812
1 1 3 1 1
024812 16 024816 0281216 04 8 12 16 048 16
94 1 2 4 1

# Plot raw data, superposing subjects
xYplot(twstrs ~ week | sitextreat, groups=uid,
type=’b’, label.curves=FALSE) # Fig. 20.1

# Show quartiles
xYplot(twstrs ~ week | treat, method=’quantile’, nx=0) # Fig. 20.2

# Show means with bootstrap nonparametric CLs
xYplot(twstrs ~ week | treat, method=smean.cl.boot, nx=0) # Fig.20.3



CHAPTER 20. MODELING LONGITUDINAL RESPONSES USING GENERALIZED LEAST SQUARES
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Figure 20.1: Time profiles for individual subjects, stratified by study site and dose
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Figure 20.2: Quartiles of TwsTrs Stratified by dose
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Figure 20.3: Mean responses and nonparametric bootstrap 0.95 confidence limits for population
means, stratified by dose
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20.8.2 Using OLS and Correcting Variances for Intra-Subject Correlation

Model with Y;

library(Design,T)

f «— ols(twstrs ~ treat*rcs(week,4) + rcs(age,4)*sex, x=T,y=T)

options(digits=4)
anova(f)

Analysis of Variance

Factor

treat (Factor+Higher Order Factors)

All Interactions
week (Factort+Higher Order Factors)

All Interactions

Nonlinear (Factor+Higher Order Factors)
age (Factor+Higher Order Factors)

All Interactioms

Nonlinear (Factor+Higher Order Factors)
sex (Factor+Higher Order Factors)

All Interactions
treat * week (Factor+Higher Order Factors)
Nonlinear

Nonlinear Interaction : f(A,B) vs. AB

age * sex (Factor+Higher Order Factors)
Nonlinear

Nonlinear Interaction :
TOTAL NONLINEAR
TOTAL INTERACTION
TOTAL NONLINEAR + INTERACTION
REGRESSION
ERROR

f(A,B) vs. AB

# Adjust variance-covariance matrix for intra-subject correlation

# No assumption about correlation pattern
# First use Huber cluster sandwich covariance estimator

g <« robcov(f, uid)
anova(g)

Factor

treat (Factor+Higher Order Factors)
A1l Interactiomns

week (Factor+Higher Order Factors)
A1l Interactiomns

d

Response: twstrs

£
8
6
9
6
6
6
3
4
4
3
6
4
4
3
2
2

10

9
13
18

612

3D O O 0O +Hh

Partial SS MS

1662.
1650.
9028.
1650.
7416.
1262.
364.
888.
1044.
364.
1650.
1163.
1163.
364.
62.
62.
8299.
2018.
9143.
10943.
90937 .

07
93
40
93
36
29
77
42
90
7
93
81
81
77
22
22
94
73
44
68
78

19
29
57
29

207.
275.
1003.
275.
1236.
210.
.59
222.
261.
.59
275.
290.
290.
121.
31.
31.
829.
224.
703.
607 .
148.

121

121

. Partial SS MS
4653.
4138.

23306.
4138.

581.
689.
2589.
689.

76
15
16
15
06
38

11
22

15
95
95
59
11
11
99
30
34
98
59

65
72
62
72

S PP, 0O OO0 R, P PFPORFRPPORF, O, O P~ T

.40
.85
.75
.85
.32
.42
.82
.49
.76
.82
.85
.96
.96
.82
.21
.21
.59
.51
.73
.09

N W
(o2 B > @) JNe]

NS U g

ANNOANOODOOOOODOOCODOCOOANOANOO ™
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.1940
.0869
.0001
.0869
.0001
.2060
.4840
.2022
.1357
.4840
.0869
.0994
.0994
.4840
.8112
.8112
.0001
.1407
.0001
.0001

0.0002
0.0001
<.0001
0.0001
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Nonlinear (Factor+Higher Order Factors) 6 22363.81 3727.30 25.08 <.0001

age (Factor+Higher Order Factors) 6 279.84 46.64 0.31 0.9298
A1l Interactions 3 105.20 35.07 0.24 0.8713
Nonlinear (Factor+Higher Order Factors) 4 223.34 55.84 0.38 0.8260
sex (Factor+Higher Order Factors) 4 215.98 54.00 0.36 0.8347
A1l Interactions 3 105.20 35.07 0.24 0.8713
treat * week (Factor+Higher Order Factors) 6 4138.29 689.72 4.64 0.0001
Nonlinear 4 3803.58 950.90 6.40 <.0001
Nonlinear Interaction : f(A,B) vs. AB 4  3803.58 950.90 6.40 <.0001
age * sex (Factor+Higher Order Factors) 3 105.20 35.07 0.24 0.8713
Nonlinear 2 28.07 14.04 0.09 0.9099
Nonlinear Interaction : f(A,B) vs. AB 2 28.07 14.04 0.09 0.9099
TOTAL NONLINEAR 10 23672.75 2367.28 15.93 <.0001
TOTAL INTERACTION 9 4199.22 466.58 3.14 0.0010
TOTAL NONLINEAR + INTERACTION 13 24087.86 1852.91 12.47 <.0001
REGRESSION 18 27906.36 1550.35 10.43 <.0001
ERROR 612 90937.78 148.59

# Now use cluster bootstrap covariance estimator

h < bootcov(f, uid, B=100)

anova(h)
Factor d.f. Partial SS MS F P
treat (Factor+Higher Order Factors) 8 4879.90 609.99 4.11 0.0001
A1l Interactions 6 3846.39 641.06 4.31 0.0003
week (Factor+Higher Order Factors) 9 23583.06 2620.34 17.63 <.0001
A1l Interactions 6 3846.39 641.06 4.31 0.0003
Nonlinear (Factor+Higher Order Factors) 6 21775.79  3629.30 24.42 <.0001
age (Factor+Higher Order Factors) 6 335.65 55.94 0.38 0.8941
A1l Interactiomns 3 114.87 38.29 0.26 0.8559
Nonlinear (Factor+Higher Order Factors) 4 211.89 52.97 0.36 0.8396
sex (Factor+Higher Order Factors) 4 214.18 53.55 0.36 0.8369
A1l Interactions 3 114.87 38.29 0.26 0.8559
treat * week (Factor+Higher Order Factors) 6 3846.39 641.06 4.31 0.0003
Nonlinear 4 3252.66 813.17 5.47 0.0002
Nonlinear Interaction : f(A,B) vs. AB 4  3252.66 813.17 5.47 0.0002
age * sex (Factor+Higher Order Factors) 3 114.87 38.29 0.26 0.8559
Nonlinear 2 20.21 10.10 0.07 0.9343
Nonlinear Interaction : f(A,B) vs. AB 2 20.21 10.10 0.07 0.9343
TOTAL NONLINEAR 10 24748.34 2474.83 16.66 <.0001
TOTAL INTERACTION 9 4103.71 455.97 3.07 0.0013
TOTAL NONLINEAR + INTERACTION 13 26263.10 2020.24 13.60 <.0001
REGRESSION 18 31638.78 1757.71 11.83 <.0001

ERROR 612 90937.78 148.59
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# Compare variances estimates
cbind (OLS=diag(Varcov(f)) ,Huber=diag(Varcov(g)) ,Bootstrap=diag(Varcov(h)))

OLS Huber Bootstrap

Intercept 69.88935 164.7059 237.9581
treat=5000U 7.40136 5.9373 5.7783
treat=Placebo 7.39587 4.7386 5.3305
week 0.90621 0.2750 0.3292
week’ 21.42611 6.3595 7.1285
week’’ 132.07963 36.9766 39.9628
age 0.03694 0.1029 0.1474
age’ 0.28017 1.1665 1.6329
age’’ 4.36057 19.4210 27.9583
sex=M 233.59791 437.5595 857.5275
treat=5000U * week 1.83488 0.5159 0.5453
treat=Placebo * week 1.83838 0.4084 0.5059
treat=5000U * week’ 43.18567 12.0905 11.8689
treat=Placebo * week’ 43.44157 8.8561 10.0041
treat=5000U * week’’ 265.70345 71.9817 68.3556
treat=Placebo * week’’ 267.60677 51.4669 55.1328
age * sex=M 0.13387 0.2952 0.5099
age’ * sex=M 1.04418 3.6837 5.5063
age’’ * sex=M 15.73105 61.1878 95.9781

Model with Y}, as Baseline Covariate

detach(cdystonia)

baseline « subset(data.frame(cdystonia,uid), week == 0, -week)

baseline « upData(baseline, rename=c(twstrs=’twstrs0’))

followup <« subset(data.frame(cdystonia,uid), week > 0, c(uid,week,twstrs))
both < merge(baseline, followup, by=’uid’)

dd « datadist(both)

attach(both)

dd < datadist(dd, twstrsO, week)

f2 « ols(twstrs ~ treat*rcs(week,4) + rcs(twstrs0,4) +
rcs(age,4)*sex, x=T,y=T)

f2$stats
n Model L.R. d.f. R2 Sigma
522.0000 494.6362 21.0000 0.6123 8.3256
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# Compare R"2 with original R"2

f$stats
n Model L.R. d.f.
631.0000 71.7033 18.0000 0.1074
anova(£f2)
Factor

treat (Factor+Higher Order Factors)

A1l Interactions
week (Factor+Higher Order Factors)

A1l Interactions

Nonlinear (Factor+Higher Order Factors)
twstrsO

Nonlinear

age (Factor+Higher Order Factors)

A1l Interactions

Nonlinear (Factor+Higher Order Factors)
sex (Factor+Higher Order Factors)

A1l Interactions

treat * week (Factor+Higher Order Factors)

Nonlinear

Nonlinear Interaction : f(A,B) vs. AB
age * sex (Factor+Higher Order Factors)
Nonlinear

Nonlinear Interaction : f(A,B) vs. AB
TOTAL NONLINEAR

TOTAL INTERACTION

TOTAL NONLINEAR + INTERACTION
REGRESSION

ERROR

# Huber cluster sandwich covariance estimator

g2 « robcov(f2, both$uid)
anova(g2)

Factor
treat (FactortHigher Order Factors)
A1l Interactions
week (Factor+Higher Order Factors)
All Interactions
Nonlinear (Factor+Higher Order Factors)
twstrsO
Nonlinear

Sigma

12.1898

N WO OO o 0 Hh

. Partial

2878.
1236.
6771.
1236.
289.
45899.
465.
1336.
816.
1012.
1080.
816.
1236.
104.
104.
816.
645.
645.
1753.
2064 .
3028.
54740.
34657 .

o

O OO U1 O = OO0 0O O© Ui OO O idbO01TO) WO

. Partial

2027.
1098.
8159.
1098.

445 .
18368.

176.

~N 01O OO W

SS MS

359.
206.
752.
206.
48.
15299.
232.
222.
272.
253.
270.
272.
206.
26.
26.
272.
322.
322.
146.
229.
201.
2606.
69.

SS MS
253.
183.
906.
183.

4.
6122.
88.

82
10
37
10
25
80
75
76
30
11
13
30
10
20
20
30
56
56
09
43
90
70
32

42
09
60
09
31
83
35

o

220.

NWNPDEPDEWOONWWWWWW

w
Y|

.66
.64

2.64

.07
.33
.27

.19
.97
.85
.97
.70

73

.36
.21
.93
.65
.90
.93
.97
.38
.38
.93
.65
.65
.11
.31
.91
.61

O AN OO ANO O T
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.0001
.0073
.0001
.0073
.6529
.0001
.0356
.0042
.0086
.0061
.0040
.0086
.0073
.8244
.8244
.0086
.0099
.0099
.0152
.0006
.0002
.0001

AN O O OO ODOODODODODOOODOOANOOANOANMT™

.0004
.0157
.0001
.0157
.3781
.0001
.2805
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age (Factor+Higher Order Factors) 6 777.2 129.54 1.87 0.0843
All Interactions 3 453.4 1561.14 2.18 0.0894
Nonlinear (Factor+Higher Order Factors) 4 539.8 134.94 1.95 0.1015

sex (Factor+Higher Order Factors) 4 667.0 166.74 2.41 0.0487
A1l Interactiomns 3 453.4 151.14 2.18 0.0894

treat * week (Factor+Higher Order Factors) 6  1098.6 183.09 2.64 0.0157
Nonlinear 4 156.4 39.11 0.56 0.6887
Nonlinear Interaction : f(A,B) vs. AB 4 156.4 39.11 0.56 0.6887

age * sex (Factor+Higher Order Factors) 3 453.4 151.14 2.18 0.0894
Nonlinear 2 316.7 1568.36 2.28 0.1029
Nonlinear Interaction : f(A,B) vs. AB 2 316.7 158.36 2.28 0.1029

TOTAL NONLINEAR 12 1013.5 84.46 1.22 0.2667

TOTAL INTERACTION 9 1372.7 152.52 2.20 0.0209

TOTAL NONLINEAR + INTERACTION 15 1907.3 127.15 1.83 0.0277

REGRESSION 21 38377.1 1827.48 26.36 <.0001

ERROR 500 34657.9 69.32

# Cluster bootstrap covariance estimator
h2 « bootcov(f2, both$uid, B=100)
anova(h2)

Factor d.f. Partial SS MS F P

treat (Factor+Higher Order Factors) 8 2745.2 343.15 4.95 <.0001
All Interactions 6 1650.8 275.13 3.97 0.0007

week (FactortHigher Order Factors) 9 9561.3 1062.37 15.33 <.0001
All Interactions 6 1650.8 275.13 3.97 0.0007
Nonlinear (Factor+Higher Order Factors) 6 614 .2 102.37 1.48 0.1840
twstrsO 3 13845.2 4615.06 66.58 <.0001
Nonlinear 2 175.7 87.85 1.27 0.2825

age (Factor+Higher Order Factors) 6 394 .4 65.73 0.95 0.4599
A1l Interactioms 3 193.6 64.53 0.93 0.4255
Nonlinear (Factor+Higher Order Factors) 4 310.9 77.72 1.12 0.3457

sex (Factor+Higher Order Factors) 4 274.9 68.73 0.99 0.4117
All Interactions 3 193.6 64.53 0.93 0.4255

treat * week (Factor+Higher Order Factors) 6 1650.8 275.13 3.97 0.0007
Nonlinear 4 165.7 41.41 0.60 0.6646
Nonlinear Interaction : f(A,B) vs. AB 4 165.7 41.41 0.60 0.6646

age * sex (Factor+Higher Order Factors) 3 193.6 64.53 0.93 0.4255
Nonlinear 2 165.5 82.77 1.19 0.3038
Nonlinear Interaction : f(A,B) vs. AB 2 165.5 82.77 1.19 0.3038

TOTAL NONLINEAR 12 1139.4 94.95 1.37 0.1764

TOTAL INTERACTION 9 1795.5 199.50 2.88 0.0025

TOTAL NONLINEAR + INTERACTION 15 3290.1 219.34 3.16 0.0001

REGRESSION 21 3899%4.3 1856.87 26.79 <.0001

ERROR 500 34657.9 69.32
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20.8.3 Using Generalized Least Squares

We stay with baseline adjustment and use a variety of correlation structures, with
constant variance.

rm(uid)
library(nlme) #R
library(nlme3) # S-Plus 6.1

cp < Cs(corCAR1,corExp,corCompSymm, corLin, corGaus, corSpher)
fits « vector(’list’,length(cp))
names (fits) « cp
for(k in 1:length(cp))
z «— gls(twstrs ~ treat*rcs(week,4) + rcs(twstrs0,4) + age*sex,
correlation= get(cplk]) (form=~week | uid))
fits[[k]] « =z

eval (parse(text=paste(’anova(’,
paste(’fits[[’,1:1length(cp),’]]’,collapse=","),’)’)))
# Same as saying anova(fits[[1]],fits[[2]],...)

Model df AIC BIC logLik

fits[[1]] 1 24 3539 3640 -1746
fits[[2]] 2 24 3591 3692 -1771
fits[[3]] 3 24 3574 3675 -1763
fits[[4]] 4 24 3560 3661 -1756
fits[[5]] 5 24 3591 3692 -1771
fits[[6]] 6 24 3591 3692 -1771

AIC computed above is set up so that smaller values are best. From this the
continuous-time AR1 structure fits the best, followed by linear structure. For the
remainder of the analysis use corCARr1, USING glsD.

a < glsD(twstrs ~ treat*rcs(week,4) + rcs(twstrs0,4) + agexsex,
correlation=corCAR1 (form=~week | uid))

Generalized least squares fit by REML
Model: twstrs ~ treat * rcs(week, 4) + rcs(twstrsO, 4) + rcs(age, 4) * sex
Data: NULL
Log-restricted-likelihood: -1746

Value Std.Error t-value p-value
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Intercept 6.4257 13.3777 0.48033 0.631202
treat=5000U -0.1956 2.9432 -0.06645 0.947046
treat=Placebo 6.4337 2.9601 2.17346 0.030214
week -0.4409 0.5184 -0.85045 0.395481
week’ 7.2195 3.4841 2.07211 0.038767
week’’ -9.4496 4.9287 -1.91726 0.055774
twstrsO 0.6410 0.2423 2.64535 0.008417
twstrs0’ 0.7331 0.6628 1.10609 0.269221
twstrs0’’ -2.2254 2.5898 -0.85930 0.390589
age -0.1113 0.2350 -0.47346 0.636093
age’ 0.6574 0.6509 1.00997 0.312999
age’’ -3.2184 2.5727 -1.25097 0.211529
sex=M 24.4994 18.6423 1.31418 0.189388
treat=5000U * week 0.3718 0.7394 0.50276 0.615352
treat=Placebo * week 0.2067 0.7423 0.27844 0.780791
treat=5000U * week’ -3.0258 4.9355 -0.61307 0.540112
treat=Placebo * week’ -4.0042 4.9629 -0.80683 0.420145
treat=5000U * week’’ 3.7655 6.9748 0.53987 0.589528
treat=Placebo * week’’ 4.9961 7.0157 0.71214 0.476713
age * sex=M -0.5891 0.4452 -1.32319 0.186377
age’ * sex=M 1.4969 1.2406 1.20655 0.228175
age’’ * sex=M -4.1604 4.8194 -0.86327 0.388402

Correlation Structure: Continuous AR(1)
Formula: ~week | uid
Parameter estimate(s):
Phi
0.8672
Degrees of freedom: 522 total; 500 residual
Residual standard error: 8.59
Clusters: 108

p = 0.8672, the estimate of the correlation between two measurements taken one
week apart on the same subject. The estimated correlation for measurements
10 weeks apart is 0.8672!Y = 0.24.

Plot Variogram with assumed pattern superimposed?

v <« Variogram(a, form=~ week | uid)
plot(v)

Check constant variance and normality assumptions:

@n1me in R currently has a bug in variogram that prevents the plot from being drawn.
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pl < xYplot(resid(a) ~ fitted(a) | treat, abline=1list(h=0,1ty=2))
p2 < xYplot(resid(a) ~ twstrsO, abline=list(h=0,1lty=2))
p3 «— xYplot(resid(a) ~ week, method=smean.sdl, nx=0,
abline=list (h=0,1ty=2), ylim=c(-20,20))
print(pl, more=TRUE, split=c(1,1,2,2)) # Figure20.4
print (p2, more=TRUE, split=c(1,2,2,2))
print (p3, more=FALSE,split=c(2,1,2,2))

qgnorm(a, ~(resid(., type=’n’))) # Invokes ggnorm.gls; Figure 20.5

1 1
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Figure 20.4: Three residual plots to check for absence of trends in central tendency and in variability.
Upper right panel shows the mean +2x SD.

Now get hypothesis tests, estimates, and graphically interpret the model.

anova(a)

Factor Chi-Square d.f. P
treat (Factort+Higher Order Factors) 22.16 8 0.0046
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Figure 20.5: QQ plot to check normality of residuals from GLS fit



CHAPTER 20. MODELING LONGITUDINAL RESPONSES USING GENERALIZED LEAST SQUARES

All Interactions 15.
week (Factort+Higher Order Factors) 81.
A1l Interactions 15.
Nonlinear (Factor+Higher Order Factors) 11.
twstrsO 234.
Nonlinear 2
age (Factor+Higher Order Factors) 9
All Interactions 5
Nonlinear (Factor+Higher Order Factors) 7
sex (Factor+Higher Order Factors) 5
A1l Interactiomns 5
treat * week (Factor+Higher Order Factors) 15
Nonlinear 2
Nonlinear Interaction : f(A,B) vs. AB 2
age * sex (Factor+Higher Order Factors) 5
Nonlinear 3
Nonlinear Interaction : f(A,B) vs. AB 3
TOTAL NONLINEAR 20
TOTAL INTERACTION 20
TOTAL NONLINEAR + INTERACTION 33
TOTAL 327.

# Compare coefficient estimates with OLS
cbind (OLS=coef (f2), GLS=coef(a))

Intercept 2.
treat=5000U0 -0.
treat=Placebo 5.
week -0.
week’ 8.
week’’ -10.
twstrsO 0.
twstrs0’ 0.
twstrs0’’ -2.
age -0.
age’ 0.
age’’ -2.
sex=M 18.
treat=5000U * week 0.
treat=Placebo * week 0.
treat=5000U * week’ -4,
treat=Placebo * week’ -6.
treat=5000U * week’’ 6.
treat=Placebo * week’’ 8.

age * sex=M -0.

OLS GLS
64194 6.4257
66272 -0.1956
73742 6.4337
50795 -0.4409
12557 7.2195
82480 -9.4496
62806 0.6410
90792 0.7331
98243 -2.2254
02499 -0.1113
48903 0.6574
78547 -3.2184
95866 24.4994
59192 0.3718
48642 0.2067
82604 -3.0258
18602 -4.0042
33322 3.7655
10882 4.9961
43593 -0.5891

18
84
18
11
10

.14
.57
.00
.36
.97
.00
.18
.47
.47
.00
.80
.80
.27
.14
.79

84

[
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N =
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.0189
.0001
.0189
.0849
.0001
.3436
.1441
.1720
.1181
.2017
.1720
.0189
.6501
.6501
.1720
.1498
.1498
.0622
.0171
.0036
.0001
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age’ * sex=M 0.91918 1.4969

plot (anova(a)) # Figure 20.6

par (mfrow=c(1,2)) # Figure 20.7

plot(a, week=NA, treat=NA, conf.int=FALSE)
plot(a, twstrsO=NA)

twstrsO ®
week o
treat o

treat * week @

age | ®
age *sex [ ®
sex [ ®
| | | | |
0 50 100 150 200

3(,2— df

Figure 20.6: Results of anova.Design from generalized least squares fit with continuous time AR1
correlation structure

summary (a) # Shows for week 8

Effects Response : twstrs
Factor Low High Diff. Effect S.E. Lower 0.95 Upper 0.95
week 4 12 8 8.33 1.69 5.02 11.63
twstrsO 39 53 14 14.67 1.69 11.35 17.99
age 46 65 19 2.34 2.06 -1.70 6.39
treat - 5000U:10000U 1 2 NA 0.67 1.92 -3.09 4.43

treat - Placebo:10000U0 1 3 NA 5.31 1.92 1.54 9.07
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<
>
Week TWSTRS-total score
Adjusted to: twstrs0=46 age=56 sex=F Adjusted to: treat=10000U week=8 age
Figure 20.7: Estimated effects of time and baseline TWSTRS
sex - M:F 1 2 NA -0.96 1.78 -4.45 2.53

# To get results for week 8 for a different reference group
# for treatment, use e.g. summary(a, week=4, treat="Placebo’)

# Compare low dose with placebo, separately at each time

k1l < contrast(a, list(week=c(2,4,8,12,16), treat=’5000U’),
list(week=c(2,4,8,12,16), treat=’Placebo’))

k1

week twstrsO age sex Contrast S.E. Lower Upper Z Pr(>|zl)
2 46 56 F -6.299202 2.112422 -10.439474 -2.1589311 -2.98 0.0029
4 46 56 F -5.929143 2.000672 -9.850388 -2.0078972 -2.96 0.0030
8 46 56 F -4.632395 1.937588 -8.429999 -0.8347918 -2.39 0.0168
12 46 56 F -2.871302 2.047790 -6.884897 1.1422926 -1.40 0.1609
16 46 56 F -1.052674 2.110843 -5.189850 3.0845012 -0.50 0.6180

# Compare high dose with placebo
k2 « contrast(a, list(week=c(2,4,8,12,16), treat=’10000U0’),
list(week=c(2,4,8,12,16), treat=’Placebo’))

k2

week twstrsO age sex Contrast S.E. Lower Upper Z Pr(>lzl)
2 46 56 F -6.847132 2.080123 -10.924099 -2.770165 -3.29 0.0010
4 46 56 F -7.097080 1.977315 -10.972546 -3.221614 -3.59 0.0003
8 46 56 F -5.305853 1.921916 -9.072738 -1.538967 -2.76 0.0058

12 46 56 F -1.535402 2.049264 -5.551886 2.481082 -0.75 0.4537
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16 46 56 F 2.588880 2.095188 -1.517613 6.695372 1.24 0.2166

pl < xYplot(Cbind(Contrast, Lower, Upper) ~ week, data=kl,
ylab=’Low Dose - Placebo’, type=’b’,
abline=list(h=0, 1lty=2), ylim=c(-15,10))

p2 < xYplot(Cbind(Contrast, Lower, Upper) ~ week, data=k2,
ylab="High Dose - Placebo’, type=’b’,
abline=list(h=0, 1lty=2), ylim=c(-15,10))

print(pl, more=T, split=c(1,1,1,2)) # Figure 20.8
print(p2, more=F, split=c(1,2,1,2))

nomogram(a, cex.axis=.7) # Figure 20.9
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Figure 20.8: Contrasts and 0.95 confidence limits from GLS fit
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Figure 20.9: Nomogram from GLS fit
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