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Useful Equations for Linear Regression

Simple linear regression: one predictor (p = 1):
Model: E(y|x) = α+ βx
E(y) =expectation or long–term average of y | = conditional on
Alternate statement of model: y = α + βx + e, e normal with mean zero for
all x, var(e) = σ2 = var(y|x)

Assumptions:

1. Linearity

2. σ2 is constant, independent of x

3. Observations (e’s) are independent of each other

4. For proper statistical inference (CI, P–values), y (e) is normal conditional
on x

Verifying some of the assumptions:

1. In a scattergram the spread of y about the fitted line should be constant
as x increases

2. In a residual plot (d = y − ŷ vs. x) there are no systematic patterns (no
trend in central tendency, no change in spread of points with x)

Sample of size n : (x1, y1), (x2, y2), . . . , (xn, yn)

Lxx =
∑

(xi − x̄)2 Lxy =
∑

(xi − x̄)(yi − ȳ)

β̂ = b =
Lxy
Lxx

α̂ = a = ȳ − bx̄

ŷ = a+ bx = Ê(y|x) estimate of E(y|x) = estimate of y

SST =
∑

(yi − ȳ)2 MST = SST
n−1 = s2

y

SSR =
∑

(ŷi − ȳ)2 MSR = SSR
p

SSE =
∑

(yi − ŷi)2 MSE = SSE
n−p−1 = s2

y·x

SST = SSR+ SSE F = MSR
MSE = R2/p

(1−R2)/(n−p−1) ∼ Fp,n−p−1

R2 =
SSR

SST
SSR
MSE ∼̇χ

2
p

(p = 1) ŝ.e.(b) =
sy·x√
Lxx

t = b

ŝ.e.(b)
∼ tn−p−1
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1− α two–sided CI for β b± tn−p−1,1−α/2ŝ.e.(b)

(p = 1) ŝ.e.(ŷ) = sy·x

√
1 +

1
n

+
(x− x̄)2

Lxx

1− α two–sided CI for y ŷ ± tn−p−1,1−α/2ŝ.e.(ŷ)

(p = 1) ŝ.e.(Ê(y|x)) = sy·x

√
1
n

+
(x− x̄)2

Lxx

1− α two–sided CI for E(y|x) ŷ ± tn−p−1,1−α/2ŝ.e.(Ê(y|x))

Multiple linear regression: p predictors, p > 1:
Model: E(y|x) = α+ β1x1 + β2x2 + . . .+ βpxp + e
Interpretation of βj : effect on y of increasing xj by one unit, holding all other
x’s constant

Assumptions: same as for p = 1 plus no interaction between the x’s (x’s act
additively; effect of xj does not depend on the other x’s).

Verifying some of the assumptions:

1. When p = 2, x1 is continuous, and x2 is binary, the pattern of y vs. x1,
with points identified by x2, is two straight, parallel lines

2. In a residual plot (d = y − ŷ vs. ŷ) there are no systematic patterns (no
trend in central tendency, no change in spread of points with ŷ). The
same is true if one plots d vs. any of the x’s.

3. Partial residual plots reveal the partial (adjusted) relationship between
a chosen xj and y, controlling for all other xi, i 6= j, without assuming
linearity for xj . In these plots, the following quantities appear on the axes:

y axis: residuals from predicting y from all predictors except xj
x axis: residuals from predicting xj from all predictors except xj (y is

ignored)

When p > 1, least squares estimates are obtained using more complex formu-
las. But just as in the case with p = 1, all of the coefficient estimates are
weighted combinations of the y’s,

∑
wiyi [when p = 1, the wi for estimating β

are xi−x̄∑
(xi−x̄)2

].

Hypothesis tests with p > 1:

• Overall F test tests H0 : β1 = β2 = . . . βp = 0 vs. the althernative
hypothesis that at least one of the β’s 6= 0.

• To test whether an individual βj = 0 the simplest approach is to compute
the t statistic, with n− p− 1 d.f.
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• Subsets of the β’s can be tested against zero if one knows the standard
errors of all of the estimated coefficients and the correlations of each pair
of estimates. The formulas are daunting.

• To test whether a subset of the β’s are all zero, a good approach is to com-
pare the model containing all of the predictors associated with the β’s of
interest with a sub–model containing only the predictors not being tested
(i.e., the predictors being adjusted for). This tests whether the predictors
of interest add response information to the predictors being adjusted for.
If the goal is to test H0 : β1 = β2 = . . . = βq = 0 regardless of the values
of βq+1, . . . , βp (i.e., adjusting for xq+1, . . . , xp), fit the full model with p
predictors, computing SSEfull or R2

full. Then fit the sub–model omitting
x1, . . . , xq to obtain SSEreduced or R2

reduced. Then compute the partial F
statistic

F =
(SSEreduced − SSEfull)/q
SSEfull/(n− p− 1)

=
(R2

full −R2
reduced)/q

(1−R2
full)/(n− p− 1)

∼ Fq,n−p−1

Note that SSEreduced − SSEfull = SSRfull − SSRreduced.

Notes about distributions:

• If t ∼ tb, t∼̇ normal for large b and t2∼̇χ2
1, so [ b

ŝ.e.(b)
]2∼̇χ2

1

• If F ∼ Fa,b, a× F ∼̇χ2
a for large b

• If F ∼ F1,b,
√
F ∼ tb

• If t ∼ tb, t2 ∼ F1,b

• If z ∼ normal, z2 ∼ χ2
1

• y ∼ D means y is distributed as the distribution D

• y∼̇D means that y is approximately distributed as D for large n

• θ̂ means an estimate of θ
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