Intro to Bayesian Computing Series (I)

IBC members present

Yi He, William Wu, Cindy Chen, Chuan Zhou, Heidi, Angel An, & Lily Wang

Yi.He@Vanderbilt.Edu

Department of Biostatistics School of Medicine Vanderbilt University

Feburary 16, 2006

A little history of statistics

As Efron (2004) said,

- 19th century is Bayesian statistics
- 20th century is frequentist statistics
- What's next? Possible Empirical Bayesian?
- In the last two decades, fast development of computing faciliaties and invention of Markov Chain Monte Carlo (MCMC) faciliates Bayesian analysis.
- Bayesian analysis now is feasible and attracts scientists more and more attention in various applications.

Baye's rule

The essence of Bayesian analysis is to draw inference of unknow quantities or quantiles of interest from the posterior distribution p(θ|y), which is from prior beliefs and data information. Bayes' rule provides such connection.

$$p(\theta|\mathbf{y}) = \frac{p(\theta)p(\mathbf{y}|\theta)}{p(\mathbf{y})}$$

posterior $\propto p(\theta)p(\mathbf{y}|\theta) \propto \text{prior} \times \text{data information}$ (1)

Why this makes sense? Our human brain is essentially a Bayesian machine.

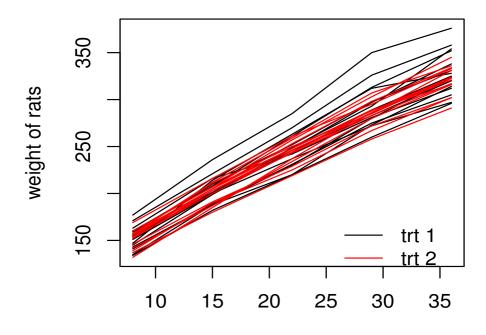
Non-informative prior

Bayesian analysis requires prior information. Can I still use Bayesian analysis without "prior" information about θ ? Yes.

- Non-informative prior, vague prior, reference prior
- Ways to construct non-informative prior
 - Intuitively, flat / almost flat over the parameter space. e.g., $X_i \sim N(\mu, \sigma^2), iid$ with σ^2 known. Then use prior $p(\mu) \propto 1$ or $p(\mu) \sim N(0, 10^6)$.
 - Jeffrey's prior, which is invariant under transformation, $p(\theta) \propto [I(\theta)]^{1/2}$ where $I(\theta)$ is the expected Fisher information in the model.
 - Non-informative prior may be improper, in the sense that $\int p(\theta) d\theta = \infty$.

Rats Data

Data are obtained from WinBUGS (Spielhalter et al. 2002) example volume I (http://www.mrc-bsu.cam.ac.uk/bugs), originally from Gelfand et al. (1990).



Random effects model

The data suggest a growing pattern with age with a little downward curvature.

$$Y_{ij} \sim N(a_i + \beta trt_i + b_i(x_j - \bar{x}), \tau_0^{-1})$$

$$a_i \sim N(\mu_a, \tau_a^{-1})$$

$$b_i \sim N(\mu_b, \tau_b^{-1}),$$
(2)

where $\bar{x} = 22$, the average of x, trt_i is the group assignment for rat i, and τ_0, τ_a, τ_b are precisions (1/variance) for the corresponding normal distributions.

This model suggests that for each subject (i.e., fix random effects a_i and b_i , and group trt_i), the growth curve is linear with noise precision τ_0 . The group effect can be captured by β .

Hierarchical normal / normal model

- Hierarchical normal / normal model is analogous to mixed model, however in Bayesian world, there are no fixed effects because all parameters are treated as random with distributions.
- The above model is not a fully Bayesian model, because it can be treated as a typical mixed model with fixed effects intercept, day, trt and random effects intercept, day.
- The first equation in model (2) specifies the likelihood and the other two specify priors for *a* and *b* through another level of parameters μ_a, μ_b, τ_a , and τ_b .

Likelihood, priors and hyperpriors

- Likelihood / data information: $Y_{ij} \sim N(a_i + \beta trt_i + b_i(x_j \bar{x}), \tau_0^{-1})$.
- Priors: $a_i \sim N(\mu_a, \tau_a^{-1})$, $b_i \sim N(\mu_b, \tau_b^{-1})$, non-informative priors are specified for τ_0 and β : $\tau_0 \sim \text{Gamma}(\epsilon, \epsilon)$, $\beta \sim N(0, 10^6)$.
- Vague hyper-priors: $\mu_a, \mu_b \sim N(0, 10^6)$ and $\tau_a, \tau_b \sim \text{Gamma}(\epsilon, \epsilon)$.
- The fully Bayesian model (2) consists of three levels: data-based likelihood level $p(\mathbf{y}|\boldsymbol{\theta})$, prior level $p(\boldsymbol{\theta}|\boldsymbol{\psi})$, and hyperprior level $p(\boldsymbol{\psi})$.
- Complex models may involve more levels, but models with more than four levels are unusual and unhelpful.
- Information contribution to posterior: Likelihood > prior > hyperprior.

BUGS program

```
model{
  #likelihood p(Y|theta)
for( i in 1 : N ) {
for( j in 1 : T ) {
Y[i , j] ~ dnorm(mu[i , j],tau.0)
mu[i , j] <- a[i] + beta * trt[i] + b[i] * (x[j] - xbar)</pre>
#Prior p(theta|Psi)
a[i] ~ dnorm(mu.a, tau.a)
b[i] ~ dnorm(mu.b, tau.b)
#prior
tau.0 ~ dgamma(0.001,0.001)
beta ~ dnorm(0.0,1.0E-6)
#hyper-priors
mu.a ~ dnorm(0.0,1.0E-6)
mu.b ~ dnorm(0.0,1.0E-6)
tau.a ~ dgamma(0.001,0.001)
tau.b ~ dgamma(0.001,0.001)
#parameters of interest
sigma <- 1 / sqrt(tau.0) #error sd</pre>
w0[1] <- mu.a - xbar * mu.b #weight at birth for 1st group
w0[2] <- mu.a + beta - xbar * mu.b #weight at birth for 2nd group
```

}

BUGS data

List format created from R, but be careful about two issues:

- 1. list data obtained from R do not have the required .Data keyword for BUGS. Add this keyword for BUGS.
- 2. BUGS reads matrix in a different way from R. For example, there is a matrix $M : 5 \times 3$ in R. In order to use it in BUGS, follow this procedure:
 - (a) transpose M: M < t(M);
 - (b) dump *M*: dput (M, "M.dat");
 - (c) open M.dat, add .Data keyword and change .Dim = c(3,5)
 to .Dim = c(5,3).

List data example

list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5, Y = structure(.Data = c(151, 199, 246, 283, 320, 145, 199, 249, 293, 354, 147, 214, 263, 312, 328, ...-p.10/15

BUGS data

Table format

- n[] x[]
- 47 0
- 148 18
- 119 8
- END

Initialize MCMC

- BUGS may automatically generate initial values, but it is highly recommended to provide initial values for fixed effects. Good initial values potentially improve convergence.
- Solution For this model, the fixed effects are $\mu_a, \mu_b, \beta, \tau_0, \tau_a$, and τ_b . So it is recommended to initialize at least these parameters.

list(mu.a = 150, mu.b = 10, beta=0, tau.0 = 1, tau.a = 1, tau.b = 1)

Procedure to run WinBUGS

See live demonstration.

- 1. Check code: select Specification from the Model menu. Highlight list in the code, and click check model button.
- 2. Load data: Then highlight list in the data code, and click load data.
- 3. Compile: click compile button and select the number of MCMC chains.
- 4. Initialize model: click initialize button.
- 5. Burn-in: Pull down Model menu and click Update.
- 6. Monitor samples: click Samples. Type parameters of interest and click set button.

Procedure to run OpenBUGS using BRUGS package in R

See live demonstration. The current BRugs package only work on Windows.

- 1. Create three text files namely ratsmodel.txt, ratsdata.txt, ratsinits.txt and save the three pieces of code in these files, respectively.
- 2. loading BRugs: library(BRugs)
- 3. Check code: modelCheck("ratsmodel.txt")
- 4. Load data: modelData("ratsdata.txt")
- 5. Compile: modelCompile(numChains=2)
- 6. Initialize model: modelInits(rep("ratsinits.txt", 2))
- 7. Burn-in: modelUpdate(1000)
- 8. Monitor samples: samplesSet(c("w0", "beta"))
- 9. More samples: modelUpdate(1000)
- 10. Statistical inference and plots are also available (see BRugs package information).

p. 14/15

Results and interpretation

See live demonstration.

- The posterior densities of these parameters can be estimated by the MCMC samples after convergence.
- Since 95%CI of β covers 0, there is no significant difference between these two groups at .05 level.
- As a conclusion, once we have the distribution of a parameter of interest, we completely know that parameter in statistical sense, so we can do whatever inference from it.