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A little history of statistics

As Efron (2004) said,

19th century is Bayesian statistics

20th century is frequentist statistics

What’s next? Possible Empirical Bayesian?

In the last two decades, fast development of computing faciliaties and
invention of Markov Chain Monte Carlo (MCMC) faciliates Bayesian
analysis.

Bayesian analysis now is feasible and attracts scientists more and
more attention in various applications.
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Baye’s rule

The essence of Bayesian analysis is to draw inference of unknow
quantities or quantiles of interest from the posterior distribution p(θ|y),
which is from prior beliefs and data information. Bayes’ rule provides
such connection.

p(θ|y) =
p(θ)p(y|θ)

p(y)

posterior ∝ p(θ)p(y|θ) ∝ prior × data information (1)

Why this makes sense? Our human brain is essentially a Bayesian
machine.
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Non-informative prior

Bayesian analysis requires prior information. Can I still use Bayesian
analysis without “prior" information about θ? Yes.

Non-informative prior, vague prior, reference prior

Ways to construct non-informative prior

Intuitively, flat / almost flat over the parameter space. e.g.,
Xi ∼ N(µ, σ2), iid with σ2 known. Then use prior p(µ) ∝ 1 or
p(µ) ∼ N(0, 106).

Jeffrey’s prior, which is invariant under transformation,
p(θ) ∝ [I(θ)]1/2 where I(θ) is the expected Fisher information in
the model.

Non-informative prior may be improper, in the sense that
∫

p(θ)dθ = ∞.
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Rats Data

Data are obtained from WinBUGS (Spielhalter et al. 2002) example
volume I (http://www.mrc-bsu.cam.ac.uk/bugs), originally from
Gelfand et al. (1990).

10 15 20 25 30 35

15
0

25
0

35
0

day

w
ei

gh
t o

f r
at

s

trt 1
trt 2

Figure 1: Rats data in hierarchical normal model
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Random effects model

The data suggest a growing pattern with age with a little downward
curvature.

Yij ∼ N(ai + βtrti + bi(xj − x̄), τ−1

0
)

ai ∼ N(µa, τ−1

a )

bi ∼ N(µb, τ
−1

b ), (2)

where x̄ = 22, the average of x, trti is the group assignment for rat i,
and τ0, τa, τb are precisions (1/variance) for the corresponding normal
distributions.

This model suggests that for each subject (i.e., fix random effects ai

and bi, and group trti), the growth curve is linear with noise precision
τ0. The group effect can be captured by β.
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Hierarchical normal / normal model

Hierarchical normal / normal model is analogous to mixed model,
however in Bayesian world, there are no fixed effects because all
parameters are treated as random with distributions.

The above model is not a fully Bayesian model, because it can be
treated as a typical mixed model with fixed effects intercept, day,
trt and random effects intercept, day.

The first equation in model (2) specifies the likelihood and the other
two specify priors for a and b through another level of parameters
µa, µb, τa, and τb.
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Likelihood, priors and hyperpriors

Likelihood / data information: Yij ∼ N(ai + βtrti + bi(xj − x̄), τ−1

0
).

Priors: ai ∼ N(µa, τ−1

a ), bi ∼ N(µb, τ
−1

b ), non-informative priors are
specified for τ0 and β: τ0 ∼ Gamma(ε, ε), β ∼ N(0, 106).

Vague hyper-priors: µa, µb ∼ N(0, 106) and τa, τb ∼ Gamma(ε, ε).

The fully Bayesian model (2) consists of three levels: data-based
likelihood level p(y|θ), prior level p(θ|ψ), and hyperprior level p(ψ).

Complex models may involve more levels, but models with more than
four levels are unusual and unhelpful.

Information contribution to posterior: Likelihood > prior > hyperprior.
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BUGS program

model{

#likelihood p(Y|theta)

for( i in 1 : N ) {

for( j in 1 : T ) {

Y[i , j] ˜ dnorm(mu[i , j],tau.0)

mu[i , j] <- a[i] + beta * trt[i] + b[i] * (x[j] - xbar)

}

#Prior p(theta|Psi)

a[i] ˜ dnorm(mu.a, tau.a)

b[i] ˜ dnorm(mu.b, tau.b)

}

#prior

tau.0 ˜ dgamma(0.001,0.001)

beta ˜ dnorm(0.0,1.0E-6)

#hyper-priors

mu.a ˜ dnorm(0.0,1.0E-6)

mu.b ˜ dnorm(0.0,1.0E-6)

tau.a ˜ dgamma(0.001,0.001)

tau.b ˜ dgamma(0.001,0.001)

#parameters of interest

sigma <- 1 / sqrt(tau.0) #error sd

w0[1] <- mu.a - xbar * mu.b #weight at birth for 1st group

w0[2] <- mu.a + beta - xbar * mu.b #weight at birth for 2nd group

}
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BUGS data

List format created from R, but be careful about two issues:

1. list data obtained from R do not have the required .Data keyword
for BUGS. Add this keyword for BUGS.

2. BUGS reads matrix in a different way from R. For example, there is
a matrix M : 5 × 3 in R. In order to use it in BUGS, follow this
procedure:

(a) transpose M : M <- t(M);
(b) dump M : dput(M, "M.dat");
(c) open M.dat, add .Data keyword and change .Dim = c(3,5)

to .Dim = c(5,3).

List data example
list(x = c(8.0, 15.0, 22.0, 29.0, 36.0), xbar = 22, N = 30, T = 5,

Y = structure(

.Data = c(151, 199, 246, 283, 320,

145, 199, 249, 293, 354,

147, 214, 263, 312, 328,

155, 200, 237, 272, 297,

.......................

.Dim = c(30,5)))
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BUGS data

Table format

n[] x[]

47 0

148 18

119 8

END
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Initialize MCMC

BUGS may automatically generate initial values, but it is highly
recommended to provide initial values for fixed effects. Good initial
values potentially improve convergence.

For this model, the fixed effects are µa, µb, β, τ0, τa, and τb. So it is
recommended to initialize at least these parameters.

list(mu.a = 150, mu.b = 10, beta=0, tau.0 = 1, tau.a = 1, tau.b = 1)
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Procedure to run WinBUGS

See live demonstration.

1. Check code: select Specification from the Model menu. Highlight
list in the code, and click check model button.

2. Load data: Then highlight list in the data code, and click load
data.

3. Compile: click compile button and select the number of MCMC
chains.

4. Initialize model: click initialize button.

5. Burn-in: Pull down Model menu and click Update.

6. Monitor samples: click Samples. Type parameters of interest and
click set button.
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Procedure to run OpenBUGS using BRUGS package in R

See live demonstration. The current BRugs package only work on Windows.

1. Create three text files namely ratsmodel.txt, ratsdata.txt,
ratsinits.txt and save the three pieces of code in these files, respectively.

2. loading BRugs: library(BRugs)

3. Check code: modelCheck("ratsmodel.txt")

4. Load data: modelData("ratsdata.txt")

5. Compile: modelCompile(numChains=2)

6. Initialize model: modelInits(rep("ratsinits.txt", 2))

7. Burn-in: modelUpdate(1000)

8. Monitor samples: samplesSet(c("w0", "beta"))

9. More samples: modelUpdate(1000)

10. Statistical inference and plots are also available (see BRugs package
information). · · · – p. 14/15



Results and interpretation

See live demonstration.

The posterior densities of these parameters can be estimated by the
MCMC samples after convergence.

Since 95%CI of β covers 0, there is no significant difference between
these two groups at .05 level.

As a conclusion, once we have the distribution of a parameter of
interest, we completely know that parameter in statistical sense, so
we can do whatever inference from it.
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