Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

B.H. Robbins Scholars Series

June 23, 2010

1/29

Outline

$\begin{array}{c} \text{Comparing two proportions} \\ \text{Z-test} \\ \chi^2\text{-test} \\ \text{Confidence Interval} \\ \text{Sample size and power} \end{array}$

Relative effect measures

Summary example

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Comparing two proportions

L_Z-test

- Compare dichotomous independent variable (predictor) with a dichotomous outcome
 - Independent variables: treatment/control, exposed/not exposed
 - Outcome variables: Diseased/not diseased, Yes/no

Recall from last time

General form of the test statistics (T- or Z-) are

- QOI: quantity of interest (Sample average)
- ► Constant: A value that is consistent with H₀ (population mean under H₀)
- SE (Standard error): Square root of the variance of the numerator (e.g., uncertainty) under H₀
- How big is the signal (numerator) relative to the noise (denominator)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)
Comparing two proportions
L_Z-test

Normal theory test

Two independent samples

	Sample 1	Sample 2
Sample size	<i>n</i> ₁	<i>n</i> ₂
Population probability of event	p_1	<i>p</i> ₂
Sample proportion of events	\hat{p}_1	\hat{p}_2

- ▶ We want to test H_0 : $p_1 = p_2 = p$ versus H_A : $p_1 \neq p_2$
- This is equivalent to testing H_0 : $p_1 p_2 = 0$ versus H_A : $p_1 p_2 \neq 0$

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)
Comparing two proportions
L_Z-test

Normal theory test

•
$$QOI = \hat{p}_1 - \hat{p}_2$$

- To obtain the test statistic, we need the variance of $\hat{p}_1 \hat{p}_2$
- From last time: $Var(\hat{p}) = \hat{p} \cdot (1 \hat{p})/n$
- Note: Variance of a difference is equal to the sum of the variances (if they are uncorrelated)
- Variance of $\hat{p}_1 \hat{p}_2$

$$Var(\hat{p}_1 - \hat{p}_2) = rac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + rac{\hat{p}_2(1 - \hat{p}_2)}{n_2}$$

but under H_0 (where $p_1 = p_2 = p$)

$$Var(\hat{p}_1-\hat{p}_2)=p(1-p)\cdot\left[rac{1}{n_1}+rac{1}{n_2}
ight]$$

6 / 29

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Comparing two proportions L_{Z-test}

Normal theory test

• $Var(\hat{p}_1 - \hat{p}_2)$ is estimated by using

$$\hat{p} = rac{n_1\hat{p}_1 + n_2\hat{p}_2}{n_1 + n_2}$$

which is the pooled estimate of the probability under

$$H_0: p_1 = p_2$$

Z-test statistic is given by

$$z=rac{\hat{
ho}_1-\hat{
ho}_2}{\sqrt{\hat{
ho}(1-\hat{
ho})\left[rac{1}{n_1}+rac{1}{n_2}
ight]}}$$

which has a normal distribution under H_0 if $n_i \hat{p}_i$ are large enough

We look to see if this z-value is far out in the tails of the standard normal distribution

Normal theory test: Recall again what we are doing...

- Under H_0 : $p_1 = p_2$
 - 1. Draw a sample from the target population
 - 2. Calculate \hat{p}_1 , \hat{p}_2 , \hat{p} , and then z
 - 3. Save your z value
 - 4. Go back to 1
- Repeat again and again.
- What does this distribution of z values look like?

イロト 不得 とくき とくき とうき

8/29

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Comparing two proportions L-Z-test

Example

- Do women in the population who are less than 30 at first birth have the same probability of breast cancer as those who are at least 30.
- Case-control study data

	With BC	Without BC
Number of subjects $(n_1 \text{ and } n_2)$	3220	10245
Number of subjects \geq 30	683	1498
Sample proportions $(\hat{p}_1 ext{ and } \hat{p}_2)$	0.212	0.146

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) Comparing two proportions LZ-test

Example

Pooled probability:

$$\frac{683+1498}{3220+10245}=0.162$$

• Calculate variance under H_0

$$Var(\hat{p}_1 - \hat{p}_2) = \hat{p}(1 - \hat{p}) \left[\frac{1}{n_1} + \frac{1}{n_2}\right] = 5.54 \times 10^{-5}$$
$$SE(\hat{p}_1 - \hat{p}_2) = \sqrt{Var(\hat{p}_1 - \hat{p}_2)} = 0.00744$$

Test statistic

$$z = \frac{0.212 - 0.146}{0.00744} = 8.85$$

Two tailed p-value is effectively 0

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\chi^2-\text{test}}$

 χ^2 test

- If Z∼ N(0, 1) then Z² ∼ χ² with 1 d.f. (e.g., testing a single difference against 0)
- The data just discussed can be shown in a two by two table

	With BC	Without BC	total
Age \geq 30	683	1498	2181
Age < 30	2537	8747	11284
Total	3220	10245	13465

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\chi^2-\text{test}}$

 χ^2 test

Two by two table:

	Disease	No disease	total
Exposed	а	b	a+b
Not Exposed	С	d	c+d
Total	a+c	b+d	N=a+b+c+d

 Like the other test statistics, the χ² examines the difference between what is observed and what we expected to observe if H₀ is true

$$\chi_1^2 = \sum_{i=1}^2 \sum_{j=1}^2 \frac{(Observed_{ij} - Expected_{ij})^2}{Expected_{ij}}$$

- ► Observed_{ij} : is the observed frequency in cell (*i*, *j*)
- *Expected*_{ij} : is the expected cell frequency if H_0 is true.

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\gamma^2-\text{test}}$

 χ^2 test

- Under the null hypothesis, the rows and the columns are independent of one another
 - ► Having age < 30 or age ≥ 30 provides no information about presence/absence of BC</p>
 - Presence / absence of BC provides no information about age
- Under Independence: $Expected_{ij} = \frac{Row \ i \ total \times \ Column \ j \ total}{grand \ total}$

•
$$Expected_{21} = \frac{11284 \times 3220}{13465} = 2698.4$$

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) $\carbox{L-}$ Comparing two proportions $\carbox{L-}_{\chi^2-test}$

 $\chi^2 \ {\rm test}$

Observed

	With BC	Without BC
Age \geq 30	683	1498
Age < 30	2537	8747

Expected

	With BC	Without BC
Age \geq 30	522	1659
Age < 30	2698	8586

$$\chi_1^2 = \frac{(683 - 522)^2}{522} + \frac{(1498 - 1659)^2}{1659} + \dots$$

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\chi^2-\text{test}}$

 χ^2 test

 \blacktriangleright For 2 by 2 tables the χ^2 test statistic can also be written

$$\frac{N(ad-bc)^2}{(a+c)(b+d)(a+b)(c+d)}$$

- In this example, $\chi^2_1 = 78.37$
- This χ^2 value is z^2 from earlier.
- The two sided critical value for the χ_1^2 test is 3.84
- \blacktriangleright Note that even though we're doing a 2-tailed test we only use the right tail in the χ^2 test
- We've squared the difference when computing the statistic and so the sign is lost
- This is called the ordinary Pearson's χ^2 test

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\chi^2-\text{test}}$

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2) \Box Comparing two proportions $\Box_{\chi^2-\text{test}}$

Fisher's Exact Test

- Meant for small sample sizes but is a conservative test (e.g., reject H₀ less often than you could or should)
- Pearson's \(\chi_2\) test work fine often even when expected cell counts are less than 5 (contrary to popular belief)

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

Comparing two proportions

Confidence Interval

Confidence Interval

- An approximate $1 - \alpha$ two-sided ci is

$$\hat{p}_1 - \hat{p}_2 \pm z_{1-lpha/2} \sqrt{rac{\hat{p}_1(1-\hat{p}_1)}{n_1} + rac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

- ► $z_{1-\alpha/2}$ is the critical value for the normal distribution (1.96 when $\alpha = 0.05$).
- The confidence limits for the number of patients needed to treat (NNT) to save one event is given by the reciprocal of the two confidence limits.

- Comparing two proportions

Confidence Interval

Confidence Interval: Physicians Health Study

- Five-year randomized study of whether regular aspirin intake reduces mortality due to CVD
- 11037 randomized to receive daily aspirin dose and 11043 randomized to placebo
- Let's only consider incidence of an MI over the 5 year time frame

	With MI	Without MI	total
Placebo	198	10845	11043
Aspirin	104	10933	11037
Total	302	21778	22080

・ロン ・四 ・ ・ ヨン ・ ヨン … ヨ

Comparing two proportions

Confidence Interval

Confidence Interval Example: Physicians Health Study

 $\hat{p}_1 = 198/11043 = 0.0179$ $\hat{p}_2 = 104/11037 = 0.0094$ $\hat{p}_1 - \hat{p}_2 = 0.0085$ (*LCI*, *UCI*) = (0.0054, 0.0116)

- 1.79/0.94 percent chance of having an MI in 5 years on placebo/medication
- ► The difference (CI) is 0.85 percent (0.54,1.16).
- Number needed to treat (NNT) to prevent an MI is the inverse of these quantities
- The interval (86.44, 183.64) contains the NNT to prevent one MI (with 95 percent confidence).

Hypothesis Testing, Power, Sample Size and Confidence Intervals (Part 2)

- Comparing two proportions

Sample size and power

Sample size and power for comparison two proportions

Power increases when

- Sample size $(n_1 \text{ and } n_2)$ increases
- ▶ As $n_1/n_2 \rightarrow 1$
- As $\Delta = |p_1 p_2|$ increases
- Power calculation (http://statpages.org/#Power)
 - Current therapy: 50% infection-free at 24 hours.
 - New therapy: 70% infection-free
 - Randomly assign n₁ = 100 subjects to receive standard care and n₂ = 100 to receive new therapy.
 - What is the power to detect a significant difference between the two therapies ($\alpha = 0.05$)?
 - $p_1 = 0.5$, and $p_2 = 0.7$, $n_1 = n_2 = 100$
 - Power is 0.83.

Sample size and power

Sample size and power for comparison two proportions

- Required sample size decreases when
 - As $n_1/n_2 \rightarrow 1$
 - As $\Delta = |p_1 p_2|$ increases
- Required sample size depends on both p₁ and p₂
- Example: Number of subjects needed to detect a 20 percent decrease in the probability of colorectal cancer if baseline probability of cancer is 0.15 percent

$$p_1 = 0.0015, p_2 = 0.8 \times p_1 = 0.0012,$$

 $\alpha = 0.05, \beta = 0.2, n_1 = n_2 \sim 235145$

Relative effect measures

- So far, we have discussed absolute risk differences
- Measures of relative effect include risk ratios and odds ratios

$$RR = \frac{p_2}{p_1}$$
$$OR = \frac{p_2/(1 - p_2)}{p_1/(1 - p_1)}$$

- RRs are easier to interpret than ORs but they have problems (e.g., a risk factor that doubles your risk of lung cancer cannot apply to a subject having a risk of 50 percent)
- ORs can apply to any subject
- Testing H_0 : $p_1 = p_2$ is equivalent to H_0 : OR = 1
- There are formulas for computing CIs for odds ratios, although we usually compute CIs for ORs by anti-logging CIs for log ORs based on logistic regression

Summary Example

- Consider patients who undergo CABG surgery
- Study question: Do emergency cases have a surgical mortality rate that is different from that of non-emergent cases.
- Population probabilities
 - ▶ *p*₁ : Probability of death in patients with emergency priority
 - *p*₂ : Probability of death in patients with non-emergency priority
- Statistical Hypotheses
 - $H_0: p_1 = p_2 \text{ or } H_0: OR = 1$
 - $H_A: p_1 \neq p_2 \text{ or } H_0: OR \neq 1$

Summary Example: Power

- Prior Research shows that just over 10 percent of non-emergent surgeries result in death
- Researcher want to be able to detect a 3-fold increase in risk in death
- ► For every 1 emergency priority, we expect 10 non-emergency
- $p_1 = 0.3$, $p_2 = 0.1$, $\alpha = 0.05$ and power=0.90
- Calculate the sample sizes (done using PS software) for these and other combinations of p₁ and p₂

(p_1, p_2)	(0.3, 0.1)	(0.4, 0.2)	(0.03, 0.01)	(0.9, 0.7)
<i>n</i> ₁	40	56	589	40
<i>n</i> ₂	400	560	5890	400

Summary Example: Data

In hospital mortality for emergency or other surgery

	Outcome	
Priority	Dead	alive
Emergency	6	19
Other	11	100

•
$$\hat{p}_1 = \frac{6}{25} = 0.24$$

•
$$\hat{p}_2 = \frac{11}{111} = 0.10$$

$$\hat{p}_1 - \hat{p}_2 = 0.14$$

- ▶ 95% CI = (-0.035, 0.317)
- p-values:
 - Fisher exact test: 0.087
 - Pearson χ²: 0.054

Summary Example: Interpretation

• Compare the odds of death in the emergency group $\frac{p_1}{1-p_1}$ versus the other group $\frac{p_2}{1-p_2}$

$$\textit{OR}_{1,2} = \frac{0.24}{0.76} / \frac{0.1}{0.9} = 2.87$$

Emergency cases are estimated to have 2.87 fold increase in odds of death during surgery compared to non-emergency cases with 95%CI : [0.95, 3.36]