Department of Biostatistics Seminar/Workshop Series

Asymptotic vs. Empirical Statistical Inference

Matthew S. Shotwell, PhD

Assistant Professor, Department of Biostatistics, School of Medicine, Vanderbilt University

Wednesday September 28th, 2013, 1:30 -2:30pm, MRBIII Room 1220

The most important products of applied statistical work are statistical inferences, e.g., hypothesis tests and confidence regions. Hence, the statistician is primarily concerned with assuring that statistical inferences are correct, with regard to their degree of uncertainty, e.g., type I error or coverage probability. By convention, asymptotic arguments, and notably the central limit theorem, are most commonly used to bolster the assumed correctness of statistical inferences. This presentation examines several examples where this paradigm falters, and why it may be wholly unnecessary. Potential empirical alternatives are presented to directly verify the correctness of statistical inferences, given assumptions that are usually no stronger than those associated with asymptotic results.

-- AudreyCarvajal - 09 Aug 2013

This topic: Main > WebHome > Seminars > MatthewShotwellAug282013
Topic revision: 26 Aug 2013, AudreyCarvajal
This site is powered by FoswikiCopyright © 2013-2022 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Vanderbilt Biostatistics Wiki? Send feedback