Biostatistics Weekly Seminar

Deciphering tissue microenvironment from Next Generation Sequencing data

Jian Hu, PhD Candidate
Department of Biostatistics Epidemiology and Bioinformatics, University of Pennsylvania

The advent of high-throughput next-generation sequencing (NGS) technologies has transformed our understanding of cell biology and human disease. As NGS has been adopted earliest by the scientific community, its use has now become widespread, and the technology has improved rapidly. At present, it is now common for laboratories to assay genome-wide transcriptomes of thousands of cells in a single scRNA-seq experiment. In addition, technologies that enable the measurement of new information, for example, chromatin accessibility, protein quantification, and spatial location, have been developed. In order to take full advantage of the multi-modality information when analyzing NGS data, new methods are demanded. This seminar will introduce several machine learning algorithms for NGS data analysis with different aims, including cell type classification, spatial domain detection, and tumor microenvironment annotation.

Zoom (Link to Follow)
14 January 2022

Speaker Itinerary

Topic revision: r4 - 07 Jan 2022, SimonVandekar

This site is powered by FoswikiCopyright © 2013-2022 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Vanderbilt Biostatistics Wiki? Send feedback