Biostatistics Weekly Seminar

Making Sense of Noisy Data: Why and How?

Grace Yi, PhD
Western University

Thanks to the advancement of modern technology in acquiring data, massive data with diverse features and big volume are becoming more accessible than ever. The impact of big data is significant. While the abundant volume of data presents great opportunities for researchers to extract useful information for new knowledge gain and sensible decision making, big data present great challenges. A very important, sometimes overlooked challenge is the quality and provenance of the data. Big data are not automatically useful; big data are often raw and involve considerable noise. Typically, the challenges presented by noisy data with measurement error, missing observations and high dimensionality are particularly intriguing. Noisy data with these features arise ubiquitously from various fields including health sciences, epidemiological studies, environmental studies, survey research, economics, and so on. In this talk, I will discuss some issues induced from noisy data and how they may challenge inferential procedures.

Zoom (Link to Follow)
04 November 2020

Speaker Itinerary

Topic revision: r2 - 28 Oct 2020, AndrewSpieker

This site is powered by FoswikiCopyright © 2013-2020 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding Vanderbilt Biostatistics Wiki? Send feedback