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» Quantifying statistical uncertainty is important.
» Sometimes interested in unusual quantities:
error variance

random effects variances

“nuisance” parameters
functions of parameters
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bootstrap works but has drawbacks:
computationally intense

estimability issues (e.g., sparse categories)
Monte carlo error (i.e., not deterministic)

no Bayesian version
2n—1

""" ) possible bootstraps

not good for very small samples; (

complicated for correlated data
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This talk will focus on approximations:

>

>

>

computationally easy (no bootstrap or MCMCQ)

no estimability issues

deterministic

applies in likelihood and Bayesian context

works for very small samples (but may not be very good)
not complicated for correlated data
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Quantifying uncertainty is based on:
» likelihood function: L(6#|D)
» posterior density: P(0|D) o< L(6|D)P(0)
» generic: P(0)
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The log of P(#) can be approximated using a second-order Taylor
approximation about 6’ as follows:

log P(0) ~ log P(0) + G(0")(6 — ') + %(9 —0"TH@) 6 -0

where the gradient of log P(6) at ¢’ is

Olog P(0)

G = g

0=0’

and the Hessian of log P(0) at ¢’ is

0% log P(6
1) = T

0=0’
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If we let @' = 0 be the value that maximizes log P(6) (i.e., a
maximum likelihood estimate [MLE] or maximum a posteriori
[MAP] estimate) and exponentiate both sides, we have the
following:

1 N A
P(0) ~ K exp | —5(0 - H)Tx1(6 - 6)

where K is a constant with respect to # and £~1 = —H(#’). From
this, we draw the following conclusions/connections:

» The posterior density can be approximated by a multivariate
normal density with mean 6 and variance-covariance X (this is
identical to a Laplace approximation).

» It's no coincidence that the approximate sampling distribution
of the MLE is the same multivariate normal distribution.

» Easy confidence/credible intervals: éj + 1.96\/fljj
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In both the likelihood (MLE) and Bayesian context, our uncertainty
about 6 is captured (approximately) by the multivariate normal
density with mean 6 and variance-covariance 3.
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Say we want to quantify uncertainty about a function g(6).
Approximate (essentially the delta method)!

9(0) = g(6) + G(6')(0 - 0')

Since uncertainty about 6 (Bayesian) or 6’ = 6 (likelihood) is
captured by the normal distribution, then the same is
approximately true for g(6). In both the likelihood and Bayesian
case, uncertainty about g(0) is quantified by the following:

9(6) ~ N(6,G(HZGO)")

So, a 95% Cl is given as follows

g(0) +£1.961/G(H)SG()T
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Examples in R!
» computing likelihood can be hard (e.g., mixed effects models)
» some model fitting routines give us parts for free (e.g., vcov)

» usually necessary to code likelihood for Bayesian models



