How to make a confidence/credible interval for nearly any quantity!

Matthew S. Shotwell, Ph.D.

Department of Biostatistics Vanderbilt University School of Medicine

August 4, 2017

Big ideas

- Quantifying statistical uncertainty is important.
- ► Sometimes interested in unusual quantities:
 - ► error variance
 - ► random effects variances
 - ► "nuisance" parameters
 - functions of parameters

What about bootstrap?

The bootstrap works but has drawbacks:

- computationally intense
- estimability issues (e.g., sparse categories)
- ► Monte carlo error (i.e., not deterministic)
- ▶ no Bayesian version
- ▶ not good for very small samples; $\binom{2n-1}{n-1}$ possible bootstraps
- complicated for correlated data

Another solution.

This talk will focus on approximations:

- computationally easy (no bootstrap or MCMC)
- ▶ no estimability issues
- ▶ deterministic
- applies in likelihood and Bayesian context
- works for very small samples (but may not be very good)
- not complicated for correlated data

Likelihood vs posterior

Quantifying uncertainty is based on:

lacktriangle likelihood function: $L(\theta|D)$

lacktriangledown posterior density: $P(\theta|D) \propto L(\theta|D)P(\theta)$

• generic: $P(\theta)$

Taylor approximation

The log of $P(\theta)$ can be approximated using a second-order Taylor approximation about θ' as follows:

$$\log P(\theta) \approx \log P(\theta') + G(\theta')(\theta - \theta') + \frac{1}{2}(\theta - \theta')^T H(\theta')(\theta - \theta')$$

where the **gradient** of $\log P(\theta)$ at θ' is

$$G(\theta') = \left. \frac{\partial \log P(\theta)}{\partial \theta^T} \right|_{\theta = \theta'}$$

and the **Hessian** of $\log P(\theta)$ at θ' is

$$H(\theta') = \left. \frac{\partial^2 \log P(\theta)}{\partial \theta^T \partial \theta} \right|_{\theta = \theta'}$$

Normal approximation

If we let $\theta'=\hat{\theta}$ be the value that maximizes $\log P(\theta)$ (i.e., a maximum likelihood estimate [MLE] or maximum a posteriori [MAP] estimate) and exponentiate both sides, we have the following:

$$P(\theta) \approx K \exp\left[-\frac{1}{2}(\theta - \hat{\theta})^T \hat{\Sigma}^{-1}(\theta - \hat{\theta})\right]$$

where K is a constant with respect to θ and $\hat{\Sigma}^{-1} = -H(\theta')$. From this, we draw the following conclusions/connections:

- ▶ The posterior density can be approximated by a multivariate normal density with mean $\hat{\theta}$ and variance-covariance $\hat{\Sigma}$ (this is identical to a Laplace approximation).
- ► It's no coincidence that the approximate sampling distribution of the MLE is the same multivariate normal distribution.
- lacksquare Easy confidence/credible intervals: $\hat{ heta}_j \pm 1.96 \sqrt{\hat{\Sigma}_{jj}}$

Uncertainty captured

In both the likelihood (MLE) and Bayesian context, our uncertainty about θ is captured (approximately) by the multivariate normal density with mean $\hat{\theta}$ and variance-covariance $\hat{\Sigma}$.

Say we want to quantify uncertainty about a function $g(\theta)$. Approximate (essentially the delta method)!

$$g(\theta) \approx g(\theta') + G(\theta')(\theta - \theta')$$

Since uncertainty about θ (Bayesian) or $\theta'=\hat{\theta}$ (likelihood) is captured by the normal distribution, then the same is approximately true for $g(\theta)$. In both the likelihood and Bayesian case, uncertainty about $g(\theta)$ is quantified by the following:

$$g(\hat{\theta}) \sim N(\hat{\theta}, G(\hat{\theta})\hat{\Sigma}G(\hat{\theta})^T)$$

So, a 95% CI is given as follows

$$g(\hat{\theta}) \pm 1.96 \sqrt{G(\hat{\theta}) \hat{\Sigma} G(\hat{\theta})^T}$$

Examples in R!

Examples in R!

- ► computing likelihood can be hard (e.g., mixed effects models)
- ► some model fitting routines give us parts for free (e.g., vcov)
- ▶ usually necessary to code likelihood for Bayesian models