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Big ideas

I Quantifying statistical uncertainty is important.
I Sometimes interested in unusual quantities:

I error variance
I random effects variances
I “nuisance” parameters
I functions of parameters



What about bootstrap?

The bootstrap works but has drawbacks:

I computationally intense

I estimability issues (e.g., sparse categories)

I Monte carlo error (i.e., not deterministic)

I no Bayesian version

I not good for very small samples;
(
2n−1
n−1

)
possible bootstraps

I complicated for correlated data



Another solution.

This talk will focus on approximations:

I computationally easy (no bootstrap or MCMC)

I no estimability issues

I deterministic

I applies in likelihood and Bayesian context

I works for very small samples (but may not be very good)

I not complicated for correlated data



Likelihood vs posterior

Quantifying uncertainty is based on:

I likelihood function: L(θ|D)

I posterior density: P (θ|D) ∝ L(θ|D)P (θ)

I generic: P (θ)



Taylor approximation

The log of P (θ) can be approximated using a second-order Taylor
approximation about θ′ as follows:

logP (θ) ≈ logP (θ′) +G(θ′)(θ − θ′) +
1

2
(θ − θ′)TH(θ′)(θ − θ′)

where the gradient of logP (θ) at θ′ is

G(θ′) =
∂ logP (θ)

∂θT

∣∣∣∣
θ=θ′

and the Hessian of logP (θ) at θ′ is

H(θ′) =
∂2 logP (θ)

∂θT∂θ
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Normal approximation

If we let θ′ = θ̂ be the value that maximizes logP (θ) (i.e., a
maximum likelihood estimate [MLE] or maximum a posteriori
[MAP] estimate) and exponentiate both sides, we have the
following:

P (θ) ≈ K exp

[
−1

2
(θ − θ̂)T Σ̂−1(θ − θ̂)

]
where K is a constant with respect to θ and Σ̂−1 = −H(θ′). From
this, we draw the following conclusions/connections:

I The posterior density can be approximated by a multivariate
normal density with mean θ̂ and variance-covariance Σ̂ (this is
identical to a Laplace approximation).

I It’s no coincidence that the approximate sampling distribution
of the MLE is the same multivariate normal distribution.

I Easy confidence/credible intervals: θ̂j ± 1.96
√

Σ̂jj



Uncertainty captured

In both the likelihood (MLE) and Bayesian context, our uncertainty
about θ is captured (approximately) by the multivariate normal
density with mean θ̂ and variance-covariance Σ̂.



What about functions of parameters?

Say we want to quantify uncertainty about a function g(θ).
Approximate (essentially the delta method)!

g(θ) ≈ g(θ′) +G(θ′)(θ − θ′)

Since uncertainty about θ (Bayesian) or θ′ = θ̂ (likelihood) is
captured by the normal distribution, then the same is
approximately true for g(θ). In both the likelihood and Bayesian
case, uncertainty about g(θ) is quantified by the following:

g(θ̂) ∼ N(θ̂, G(θ̂)Σ̂G(θ̂)T )

So, a 95% CI is given as follows

g(θ̂)± 1.96

√
G(θ̂)Σ̂G(θ̂)T



Examples in R!

Examples in R!

I computing likelihood can be hard (e.g., mixed effects models)

I some model fitting routines give us parts for free (e.g., vcov)

I usually necessary to code likelihood for Bayesian models


